Внешняя память винчестер. Внешняя память. Внешняя память компьютера представляет собой дисковые накопители информации — встроенный накопитель на жестком диске (винчестер) и накопитель на сменных. Внешняя память компьютера, Внешние запоминающие устройства
Эра технологий - Информационный сайт
  • Главная
  • Компьютерное железо
  • Внешняя память винчестер. Внешняя память. Внешняя память компьютера представляет собой дисковые накопители информации — встроенный накопитель на жестком диске (винчестер) и накопитель на сменных. Внешняя память компьютера, Внешние запоминающие устройства

Внешняя память винчестер. Внешняя память. Внешняя память компьютера представляет собой дисковые накопители информации — встроенный накопитель на жестком диске (винчестер) и накопитель на сменных. Внешняя память компьютера, Внешние запоминающие устройства

Внешняя память - это память, предназначенная для длительного хранения программ и данных. Целостность содержимого ВЗУ не зависит от того, включен или выключен компьютер

Дисковод (накопитель) - устройство записи/считывания информации. Накопители имеют собственное имя – буква латинского алфавита, за которой следует двоеточие. Для подключения к компьютеру одного или несколько дисководов и управления их работой нужен Дисковый контроллер

Носитель информации (носитель записи) – материальный объект, способный хранить информацию. Информация записывается на носитель посредством изменения физических, химических и механических свойств запоминающей среды

По типу доступа к информации внешнюю память делят на два класса:

Устройства прямого (произвольного) доступа – время обращения к информации не зависит от места её расположения на носителе;

Устройство последовательного доступа – такая зависимость существует

В состав внешней памяти входят: 1) накопители на жестких магнитных дисках (НЖМД); 2) накопители на гибких магнитных дисках (НГМД); 3) накопители на магнитооптических компакт дисках; 4) накопители на оптических дисках (CD-ROM); 5) накопители на магнитной ленте и др.

НГМД - накопители на гибких магнитных дисках

Предназначены для хранения небольших объемов информации

Следует оберегать от сильных магнитных полей и нагревания

Это носители произвольного (прямого) доступа к информации

Используются для переноса данных с одного компьютера на другой

Для работы с информации носитель должен быть отформатирован, т.е. должна быть произведена магнитная разметка диска на дорожки и секторы

Скорость обмена информации зависит от скорости вращения дисковода. Для обращения к диску, вставленному в дисковод, присваивается имя А:

Объём ГМД сравнительно небольшой (3,5 дюйма - 1,44 Мбайт)

Диски называются гибкими потому, что их рабочая поверхность изготовлена из эластичного материала и помещена в твердый защитный конверт. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно. Поверхность диска покрыта специальным магнитным слоем (1- намагниченный участок, 0 – не намагниченный). Информация записывается с двух сторон диска на дорожки в виде концентрических окружностей. Дорожки разбиваются на секторы. Современные дискетки имеют программную разметку. На каждом секторе выделяется участок для его идентификации, а на остальное место записываются данные. Дисковод снабжен двумя двигателями. Один обеспечивает вращение внутри защитного конверта. Второй перемещает головку записи/чтения вдоль радиуса поверхности диска. В защитном конверте имеется специальное окно защиты записи. С помощью бегунка это окно открывают и дискета становится доступна только на чтение, а на запись доступа не будет. Это предохраняет информацию на диске от изменения и удаления.

НЖМД - накопители на жестких магнитных дисках

Предназначены для хранения той информации, которая наиболее часто используется в работе - программ операционной системы, компиляторов, сервисных программ, прикладных программ пользователя, текстовых документов, файлов базы данных

Следует оберегать от ударов при установке и резких перемещений в пространстве

Это носители с произвольным доступом к информации

Для хранения информации разбивается на дорожки и секторы

Скорость обмена информации значительно выше ГД

Объём ЖД измеряется от Мбайт до сотен Гбайт

НЖМД встроены в дисковод и являются несъемными. Они представляют собой несколько алюминиевых дисков с магнитным покрытием, заключенных в единый корпус с электродвигателем, магнитными головками и устройством позиционирования. К магнитной поверхности диска подводится записывающая головка, которая перемещается по радиусу диска с внешней стороны к центру. Во время работы дисковода диск вращается. В каждом фиксированном положении головка взаимодействует с круговой дорожкой. На эти концентрические дорожки и производится запись двоичной информации. Благодаря хорошей защищенности от пыли, влаги и других внешних воздействий достигают высокой плотности записи, в отличии от дискет.

Для обращения к НЖМД используется имя, задаваемое прописной латинской буквой, начиная с С: , но с помощью специальной системной программы можно разбить свой физический ЖД на несколько логических дисков, каждому из которых дается соответствующее имя.

Накопители на жестких магнитных дисках часто называют винчестер - по первой модели ЖД, имевшего 30 дорожек по 30 секторов, что совпало с калибром 30?/30? охотничьего ружья

Оптические (лазерные) CD и DVD диски

Предназначены для хранения любого вида информации

Информацию на CD записывается с помощью лазерного луча

Следует оберегать от царапин и загрязнения поверхности

Это носители прямого (произвольного) доступа к информации

Объем (ёмкость) CD составляет сотни Мбайт; DVD -более 1Гбайта

Более долговечны и надежны, чем магнитные диски

CD – Compact Disk. Изготовляют из органических материалов с напылением на поверхность тонкого алюминиевого слоя. Лазерный диск имеет одну дорожку в виде спирали. Информация записывается отдельными секторами мощным лазерным лучом, выжигающим на поверхности диска углубления, и представляет собой чередование впадин и выпуклостей. При считывании информации выступы отражают свет слабого лазерного луча и воспринимаются как «1», впадины поглощают луч и, воспринимаются как «0». Это бесконтактный способ считывания информации. Срок хранения 50-100лет

DVD – Digital Video Disk. Имеет те же размеры, что и CD. Объем - Гбайт. Может быть односторонним или двухсторонним, а на каждой стороне может быть 1 или 2 рабочих слоя.

Накопители на магнитных лентах (НМЛ)

Используют для резервного (относительно медленного) копирования и хранения больших объемов информации (архивы)

Устройство для записи и считывания магнитных лент называется стример

Это устройство последовательного доступа к информации

корость передачи данных по шине дискового интерфейса - это далеко не единственный параметр, влияющий на быстродействие винчестера в целом. Наоборот, производительность жестких дисков с одинаковым типом интерфейса иногда очень существенно различается. В чем же причина?

Дело в том, что жесткий диск является совокупностью большого количества разнообразных электронных и электромеханических устройств. Быстродействие же механических компонентов винчестера существенно уступает быстродействию электроники, в состав которой входит и шинный интерфейс. Общая производительность диска, к сожалению, определяется по скорости работы самых медленных компонентов. «Горлышком бутылки» при передаче данных между накопителем и компьютером является именно внутренняя скорость передачи - параметр, определяемый быстродействием механики винчестера, что является одной из причин ремонта ноутбуков. Поэтому в самых современных режимах обмена PIO 4 и UltraDMA максимально возможная пропускная способность интерфейса в ходе реальной работы с накопителем почти никогда не достигается. Для определения быстродействия механических компонентов, а также всего накопителя необходимо знать следующие параметры.

Частота вращения дисков - количество оборотов, совершаемых пластинами (отдельными дисками) винчестера в минуту. Чем выше частота вращения, тем быстрее происходит запись или считывание данных. Типичное значение этого параметра для большинства современных EIDE-дисков - 5400 об/мин. В некоторых новейших накопителях диски вращаются с частотой 7200 об/мин. Технический предел, достигнутый на сегодняшний день, - 10000 об/мин - реализован в SCSI-накопителях серии Seagate Cheetah.

Среднее время поиска - среднестатистическое время, необходимое для позиционирования блока головок из произвольного положения на заданную дорожку для чтения или записи данных. Типичное значение этого параметра для новых винчестеров составляет от 10 до 18 мс, причем хорошим можно считать время доступа 11-13 мс. В наиболее быстродействующих SCSI-моделях значение времени доступа - меньше 10 мс.

Среднее время доступа - среднестатистический отрезок времени от выдачи команды на операцию с диском до начала обмена данными. Это - составной параметр, включающий в себя среднее время поиска, а также половину периода вращения диска (с учетом того, что данные могут находиться в произвольном секторе на нужной дорожке). Параметр определяет величину задержки до начала считывания нужного блока данных, а также общую производительность при работе с большим количеством мелких файлов.

Внутренняя скорость передачи-скорость обмена данными между интерфейсом диска и носителями (пластинами). Значения этого параметра существенно различаются для чтения и записи. Они определяются частотой вращения дисков, плотностью записи, характеристиками механизма позиционирования и другими параметрами накопителя. Именно эта скорость имеет решающее влияние на быстродействие накопителя в установившемся режиме (при чтении большого цельного блока данных). Превышение общей скорости передачи над внутренней достигается только при обмене данными между интерфейсом и кэш-памятью винчестера без немедленного обращения к пластинам. Поэтому на быстродействие накопителя влияет еще один параметр, а именно…

…объем кэш-памяти. Кэш-память - обычное электронное ОЗУ, установленное на винчестере. Данные после считывания с винчестера одновременно с передачей их в память компьютера попадают и в кэш-память. Если эти данные потребуются снова, они будут считаны не с пластин, а из кэш-буфера. Это позволяет значительно ускорить обмен данными. Для повышения эффективности кэш-памяти разработаны специальные алгоритмы, выявляющие наиболее часто используемые данные и помещающие в кэш именно их, что повышает вероятность того, что при следующем обращении будут затребованы данные именно из электронного ОЗУ - произойдет так называемое «попадание в кэш». Естественно, чем больше объем кэш-памяти, тем быстрее обычно работает диск.


Похожая информация.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Всероссийский Заочный Финансово-Экономический Институт

Филиал в г. Барнауле

Курсовая работа

по дисциплине «Информатика»

«Внешняя память компьютера»

Исполнитель:      

Группа      

№ зачетной книжки      

Руководитель:      

Барнаул 2005

Введение 3

    Внешняя память 5

    жесткие диски 8

    Дисковые массивы RAID 11

    Компакт-диски 13

    Практическая часть 17

Заключение 26

Список литературы 27

Введение

Под внешней памятью компьютера подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Как правило, для каждого носителя информации существует свой накопитель.

Первые носители информации для ЭВМ были бумажными (перфокарты, перфоленты). Для работы с ними существовало 2 отдельных устройства: перфоратор – для записи информации, счетчик – для считывания информации и передачи ее в оперативную память. Позднее появились магнитные носители информации (магнитные ленты, магнитные барабаны, магнитные диски), накопители которых совмещали в себе и устройство считывания, и устройство записи. А такое устройство, как винчестер, совмещает в себе и носитель, и накопитель. Для оптических носителей информации (компакт-дисков, цифровых дисков) накопители могут как совмещать функции чтения/записи, так и быть специализированными, например, только для чтения.

Накопители на жестких магнитных дисках (НЖМД или винчестеры) представляют собой внешние ЗУ, в которых носителем информации являются жесткие несменные магнитные диски, объединенные в пакет.

НЖМД предназначены для долговременного хранения информации, постоянно используемой при работе с ПК: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования, документов и программ, подготовленных пользователем и т. д.

В настоящее время ПК без НЖМД практически не выпускаются. Если компьютер включен в локальную компьютерную сеть, то он может работать без собственного жесткого диска, но тогда он использует жесткий диск центрального сервера.

Винчестер устанавливается внутри системного блока и внешне представляет собой герметичную металлическую коробку, внутри которой расположены несколько дисков, объединенных в один пакет, магнитные головки чтения/записи, механизм вращения диска и перемещения головок.

Основными характеристиками винчестера являются:

Емкость, то есть максимальный объем данных, который можно записать на носитель;

Быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных;

Время безотказной работы, характеризующее надежность устройства.

Емкость НЖМД зависит от модели ПК. Первый винчестер (начало 80-х годов) имел «колоссальную емкость» 10 Мбайт. Считается, что объем современного винчестера должен быть не менее 2 – 3 Гбайт. Последние модели ПК имеют винчестеры емкостью свыше 120 Гбайт, ожидается появление винчестеров емкостью до 320 Гбайт.

Чаще всего винчестер имеет имя С:. Однако емкость винчестера обычно очень велика, поэтому для удобства работы винчестер разбивают на участки. Каждый такой участок воспринимается операционной системой как отдельный диск и называется «логическим диском». Имена таких дисков – C:, D:, Е: и т. д. по алфавиту.

ВНЕШНЯЯ ПАМЯТЬ

Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.

Носитель - материальный объект, способный хранить информацию.

В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМ- стриммеры). В ПК используются только стриммеры.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Накопители на дисках более разнообразны

накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах; накопители на жестких магнитных дисках (НЖМД) типа "винчестер"; накопители на сменных жестких магнитных дисках, использующие эффект Бернулли; накопители на флоптических дисках, иначе, floptical-накопители; накопители сверхвысокой плотности записи, иначе, VHD-накопители; накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM); накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);накопители на магнитооптических дисках (НМОД) и др.

Тип накопления

Емкость, Мбайт

Время доступа, мс

Трансфер, Кбайт/с

Вид доступа

Чтение/запись

Винчестер

Чтение/запись

Бернулли

Чтение/запись

Чтение/запись

Чтение/запись

Только чтение

Чтение/ однократная запись

Чтение/запись

Примечание Время доступа - средний временной интервал, в течение которого накопитель находит требуемые данные - представляет собой сумму времени для позиционирования головок чтения/записи на нужную дорожку и ожидания нужного сектора. Трансфер - скорость передачи данных при последовательном чтении.

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5" (89 мм) и 5,25" (133 мм). Диски с форм-фактором 3,5" при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.

Информация на МД записывается и считывается магнитными головками вдоль концентрическихокружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

2. Жесткие диски

В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа "винчестер".

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром "30/30" известного охотничьего ружья "Винчестер".

В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД.

Максимальные значения на 1995 г.:

емкость 5000 Мбайт (стандарт емкости на 1995 г.-850 Мбайт); скорость вращения 7200 об./мин; время доступа - 6 мс; трансфер - 11 Мбайт/с. НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5" (89 мм), но есть и другие, в частности 5,25" (133 мм) и 1,8" (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм - у машин-серверов, 12 мм - у портативных ПК и др.

В современных винчестерах стал использоваться метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах секторов размещается больше данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.

Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и сектора, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical, или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на сектора и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.

Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.

Распространенный сейчас интерфейс AT Attachment (ATA), широкоизвестный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации "головка - цилиндр - сектор": 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.

Интерфейс Fast ATA-2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.

Наряду с ATA и ATA-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и ожидаемый в ближайшее время интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже ATA), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.

Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MS DOS (MicroSoft Disk Operation System - дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько "логических" дисков; тем самым имитируется несколько НМД на одном накопителе.

3. Дисковые массивы RAID

В машинах-серверах баз данных и в суперЭВМ часто применяются дисковые массивы RAID (Redundant Array of Independent Disks - матрица с резервируемыми независимыми дисками), в которых несколько накопителей на жестких дисках объединены в один большой логический диск, при этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель в режиме Plug and Play (вставляй и работай) замещается исправным).

Существует несколько уровней базовой компоновки массивов RAID:

1-й уровень включает два диска, второй из которых является точной копией первого;

2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;

3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;

4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.

Дисковые массивы второго поколения - RAID6 и RAID7. Последние могут объединять до 48 физических дисков любой емкости, формирующих до 120 логических дисков; имеют внутреннюю КЭШ-память до 256 Мбайт и разъемы для подключения внешних интерфейсов типа SCSI. Внутренняя шина X-bus имеет пропускную способность 80 Мбайт/с (для сравнения: трансфер SCSI-3 до 40 Мбайт/с, а скорость считывания с физического диска до 5 Мбайт/с).

Среднее время наработки на отказ в дисковых массивах RAID - сотни тысяч часов, а при 2-м уровне компоновки - до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID - от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта=5500 Гбайт).

Применяются и НЖМД со сменными пакетам и дисков (накопители Бернулли), использующие пакеты из дисков диаметром 133 мм, они имеют емкость от 20 до 230 Мбайт и меньшее быстродействие, но более дорогие, чем винчестеры. Основное их достоинство: возможность накопления и хранения пакетов вне ПК.

Основные направления улучшения характеристик НМД:

использование высокоэффективных дисковых интерфейсов (E1DE, SCSI); использование более совершенных магнитных головок, позволяющих увеличить плотность записи и, следовательно, емкость диска и трансфер (без увеличения скорости вращения диска).

4. Компакт-диски .

Общии сведения о компакт-дисках

В 1982 году фирмы Sony и Philips завершили работу над форматом CD-аудио (Compact Disk), открыв тем самым эру цифровых носителей на компакт-дисках. Принцип работы этих дисков – оптический. Чтение и запись осуществляется лазером. В компакт-диске данные кодируются и записываются в виде последовательности отражающих и не отражающих участков. Отражение интерпретируется как единица, «впадина» - как ноль.

Приведу некоторые технические параметры компакт-дисков. Рабочая длина волны лазера - 780 нм. Диаметр компакт-диска 120 мм. Толщина диска 1,2 мм. Объем диска 700 Мб (74 мин аудио). Вес 14-33 г. Цепочка углублений (pits) расположена по спирали как в грампластинке, но в направлении от центра (фактически CD является устройством последовательного доступа с ускоренной перемоткой). Интервал между витками - 1.6 мкм, ширина пита - 0.5 мкм, глубина - 0.125 мкм (1/4 длины волны луча лазера в поликарбонате), минимальная длина - 0.83 мкм (рис. 1).

Рис. 1. Поверхность компакт-диска.

Существуют модификации в 80 минут (700 МБ), 90 минут (791 МБ) и 99 минут (870 MB). Номинальная (1x) скорость передачи данных - 150 КБ/сек (176400 байт/сек аудио или "сырых" данных, 4.3 Мбит/сек "физических" данных). В то время как все магнитные диски вращаются с постоянным числом оборотов в минуту, то есть с неизменной угловой скоростью (CAV, Constant Angular Velocity), компакт-диск вращается обычно с переменной угловой скоростью, чтобы обеспечить постоянную линейную скорость при чтении (CLV, Constant Linear Velocity). Таким образом, чтение внутренних сторон осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Именно этим обуславливается достаточно низкая скорость доступа к данным для компакт-дисков по сравнению, например, с винчестерами.

Классификация компакт-дисков

Существует множество стандартов и форматов компакт-дисков – в зависимости от назначения и производителей. Приведу для примера далеко не все существующие: Audio CD (CD-DA), CD-ROM (ISO 9660, mode 1 & mode 2), Mixed-mode CD, CD-ROM XA (CD-ROM eXtended Architecture, mode 2, form 1 & form 2), Video CD, CD-I (CD-Interactive), СD-I-Ready, CD-Bridge, Photo CD (single & multi-session), Karaoke CD, CD-G, CD-Extra, I-Trax, Enhanced CD (CD Plus), Multi-session CD, CD-Text, CD-WO (Write-Once). Полное описание их займет слишком много места, и это не является целью написания данной работы.

В зависимости же от количества возможных операций записи компакт-диски разделяются на: CD-ROM (read only memory), CD-R (recordable), они же CD-WORM (write once read many), CD-RW (rewritable). Соответственно, СD-ROM изготавливается на заводе, и дальнейшая запись на него невозможна; CD-R предназначен для однократной записи в домашних условиях; CD-RW допускает множество операций записи. Диски CD-ROM представляют собой поликарбонат, покрытый с одной стороны отражающим слоем (алюминий или - для ответственных применений - золото) и защитным лаком с другой. Смена отражающей способности осуществляется за счет штамповки углублений в металлическом слое. На заводе их просто штампуют с матрицы.

Формат компакт-дисков

Поверхность диска разделена на области:

    PCA (Power Calibration Area). Используется для настройки мощности лазера записывающим устройством. 100 элементов.

    PMA (Program Memory Area). Сюда временно записываются координаты начала и конца каждого трека при извлечении диска из записывающего устройства без закрытия сессии. 100 элементов.

    Вводная область (Lead-in Area) - кольцо шириной 4 мм (диаметр 46-50 мм) ближе к центру диска (до 4500 секторов, 1 минута, 9 MB). Состоит из 1 дорожки (Lead-in Track). Содержит TOC (абсолютные временные адреса дорожек и начала выводной области, точность - 1 секунда).

    Область данных (program area, user data area).

    Выводная область (Lead-out) - кольцо 116-117 мм (6750 секторов, 1.5 минуты, 13.5 MB). Состоит из 1 дорожки (Lead-out Track).

Каждый байт данных (8 бит) кодируется 14-битным символом на носителе (кодировка EFM). Символы отделяются 3-битными промежутками, выбираемыми так, чтобы на носителе не было более 10 нулей подряд.

Из 24 байтов данных (192 бита) формируется кадр (F1-frame), 588 битов носителя, не считая промежутков:

    синхронизация (24 бита носителя)

    символ субкода (биты субканалов P, Q, R, S, T, U, V, W)

    12 символов данных

    4 символа контрольного кода

    12 символов данных

    4 символа контрольного кода

При декодировании могут использоваться различные стратегии обнаружения и исправления групповых ошибок (вероятность обнаружения против надежности коррекции).

Последовательность из 98 кадров образует сектор (2352 информационных байта). Кадры в секторе перемешаны, чтобы уменьшить влияние дефектов носителя. Адресация сектора произошла от аудиодисков и записывается в формате A-Time - mm:ss:ff (минуты:секунды:доли, доля в секунде от 0 до 74). Отсчет начинается с начала программной области, т.е. адреса секторов вводной области отрицательные. Биты субканалов собираются в 98-битные слова для каждого субканала (из них 2 бита - синхронизация). Используются субканалы:

    P - маркировка окончания дорожки (min 150 секторов) и начала следующей (min 150 секторов).

    Q - дополнительная информация о содержимом дорожки:

    • число каналов

      данные или звук

      можно ли копировать

      признак частотных предыскажений (pre-emphasis): искусственный подъем высоких частот на 20 дБ

      режим использования подканала

      • q-Mode 1: во вводной области здесь хранится TOC, в программной области - номера дорожки, адреса, индексы и паузы

        q-Mode 2: каталоговый номер диска (тот же, что на штрих-коде) - 13 цифр в формате BCD (MCN, ENA/UPC EAN)

        q-Mode 3: ISRC (International Standard Recording Code) - код страны, владельца, год и серийный номер записи

Последовательность секторов одного формата объединяется в дорожку (трек) от 300 секторов (4 секунды, см. субканал P) до всего диска. На диске может быть до 99 дорожек (номера от 1 до 99). Трек может содержать служебные области:

    пауза - только информация субканалов, нет пользовательских данных

    pre-gap - начало трека, не содержит пользовательских данных и состоит из двух интервалов: первый длиной не менее 1 секунды (75 секторов) позволяет "отстроиться" от предыдущего трека, второй длиной не менее 2 секунд задает формат секторов трека

    post-gap - конец трека, не содержит пользовательских данных, длиной не менее 2 секунд

Вводная цифровая область должна завершаться постзазором. Первый цифровой трек должен начинаться со второй части предзазора. Последний цифровой трек должен завершаться постзазором. Выводная цифровая область не содержит предзазора.

Практическая часть

Вариант 14

Используя ППП на ПК, необходимо определить расходы на содержание одного учащегося в группе продленного дня в городской школе в год по имеющимся данным.

Показатель

Принято в текущем году

Проект на следующий год

заработная плата в год, руб

Расходы на питание:

Вычислите:

    Сумму расходов на питание учащегося в текущем и проектируемом году;

    Сумму расходов на содержание учащегося в текущем и проектируемом году;

    Абсолютное и относительное изменение исчисленных показателей проектируемого года к показателям текущего в виде таблицы.

Введите текущее значение даты между таблицей и ее названием.

По данным таблицы постройте гистограмму с заголовком, названием осей координат и легендой.

1. Выбор ППП.

В данной задаче наиболее целесообразно применить и использовать табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

2.Описание алгоритма решения задачи.

ТС - общая сумма затрат на содержание одного учащегося, Z – заработная плата, D – начисления на заработную плате, C – затраты на мягкий инвентарь, N – норма на питание в день, K – количество дней функционирования групп.

Сумма расходов на питание N*K

Сумма расходов на содержание учащегося Z+(Z*D/100)+C

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего: ABS проект – ABS текущ

Заработная плата в год

Тносительное изменение исчисленных показателей проектируемого года к показателям текущего: (ABS проект – ABS текущ)*100/(N*K) тек

Норма расходов на питание


Начисления на заработную плату


Число дней функционирования групп


Расходы на мягкий инвентарь


Сумма расходов на питание учащегося в текущем и проектируемом году


Сумма расходов на содержание учащегося в текущем и проектируемом году


Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего


Относительное изменение исчисленных показателей проектируемого года к показателям текущего


Рисунок 1 Неформализованное описание решения задачи






S питание = N*K



ABS=ABS проект – ABS текущ


ABS*100/S тек.год


Проектирование форм выходных документов и графическое представление данных по выбранной задаче.

3 Структура шаблонов таблиц

Таблица.1 «Расходы на содержание одного учащегося»

Таблица 2 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год

Колонка электронной таблицы

Наименование (реквизиты)

Тип данных

Формат данных

Точность

Показатель

текстовый

Принято в текущем году

Числовой

Принято в текущем году

Числовой

Числовой

Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%)

Числовой

4 Расположение таблиц на рабочих листах MS Excel.

Таблица 3 Расходы на содержание одного учащегося

Таблица 4. Итоговая таблица расходы на содержание учащегося в группе продленного дня в городской школе.

5 Шаблоны таблиц с исходными данными

Таблица 6 Расходы на содержание одного учащегося

Показатель

Принято в текущем году

Проект на следующий год

Средняя сумма расходов на одного учащегося в год:

заработная плата в год, руб

начисления на заработную плату, %

расходы на мягкий инвентарь, руб

Расходы на питание:

норма расходов на питание в день, руб.

число дней функционирования групп

Таблица 6 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год.

Показатель

в текущем году

проектируемом году

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб)

Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%)

Сумма расходов на питание учащегося, руб

Сумма расходов на содержание учащегося, руб

C10+(C11*C10/100)+C12

D10+(D11*D10/100)+D12

Итого (руб):

СУММ(C24:C25)

СУММ(D24:D25)

СУММ(E24:E25)

СУММ(F24:F25)


6 Инструкция пользователя.

Последовательность действий пользователя при решении задачи:

Для запуска программы MS Excel из главного меню Windows нажимаем кнопку Пуск и выбираемMS Excel в меню Программы.

Вводим исходные данные в электронную таблицу формы кассового ордера

    После того как ввели исходные данные, выделяем необходимые ячейки, выбираем формат ячейки и отмечаем необходимый тип данных (числовой, Дата, текстовый, денежный), в денежном формате выбираем число десятичных знаков

    Выделяем всю таблицу и копируем ее на новый лист.

    На новом листе выделяем всю таблицу выбираем в панели инструментов Данные →Фильтр→ Автофильтр . С помощью автофильтра мы можем отфильтровать данные по получателям и по видам оплат.

    По полю сумма подводим итог и что бы итог отображался при фильтровании данных используем Вставка функции →математические→ ПРОМЕЖУТОЧНЫЕ.ИТОГИ далее выбираем область данных суммы.

7 Технология построения диаграмм

    Нажимаем кнопку Мастер диаграмм на панели инструментов Стандартная.

    Осуществляем построение нужной диаграммы:

Шаг 1. Выбираем Тип (Гистограмма) и Вид (Обычная ) диаграммы, нажимаем кнопку Далее.

Шаг 2. Нажимаем закладку Ряд, в окне Ряд удаляем если есть лишние Ряды , Нажимаем добавить ряд, далее выделяем нужный диапазон в нашем случае(предельные издержки и предельная выручка) в окне подписи по оси Х нажимаем флажок:

В окне Источник данных диаграмм указываем диапазон

наименование товара путем выделения соответствующей зоны в

таблице, нажимаем флажок, нажимаем кнопку Далее.

Шаг 3. Выбираем необходимые заголовки и нажимаем кнопку

Шаг 4. Выполняем указания Мастера диаграмм и нажимаем

кнопку Готово.

Устанавливаем курсор в свободное место диаграммы, щелкаем

кнопкой мыши и удерживая кнопку перетаскиваем диаграмму на

необходимое поле Листа.

Щелкаем кнопкой мыши в любой из точек на рамке Области диаграммы и растягиваем рамку диаграммы до нужного размера.

Заключение

В данной курсовой мы рассмотрели тему «Внешняя память компьютера». А также выполнили практическую часть использовав табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

В теоретической части рассмотрели виды внешней памяти:

    Магнитные диски (МД)

    Жесткие диски

    Дисковые массивы RAID

    Компакт-диски

А так же дали определение внешней памяти компьютера. Под ней подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Список литературы

    Гейн А.Г., Сенокосов А.И., Шолохович В.Ф. Информатика: 7-9 кл. Учеб. для общеобразоват. учеб. заведений - М.: Дрофа, 2002.

    Каймин В.А., Щеголев А.Г., Ерохина Е.А., Федюшин Д.П. Основы информатики и вычислительной техники: Проб. учеб. для 10-11 классов средн. школы. - М.: Просвещение, 2001.

    Кушниренко А.Г., Лебедев Г.В., Сворень Р.А. Основы информатики и вычислительной техники: Учеб. для средн. учеб. заведений. - М.: Просвещение, 2003.

    Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика: уч. по базовому курсу. - М.: Лаборатория Базовых Знаний, 1999.

    Угринович Н. Информатика и информационные технологии. Учебное пособие для общеобразовательных учреждений. - М.: БИНОМ, 2003. - 464 с. (§ 2.14. Хранение информации, с. 91-98).

Внешняя память компьютера представляет собой дисковые накопители информации - встроенный накопитель на жестком диске (винчестер) и накопитель на сменных гибких дисках (дискетах). В обоих случаях магнитные диски хранят информацию в виде намагниченных концентрических дорожек (цилиндров) на магнитном покрытии, разбитых на сектора. Диск в накопителе постоянно вращается, а запись и чтение информации производятся перемещаемыми вдоль радиуса диска магнитными головками. Благодаря постоянному прогрессу технологии производства накопителей, развитию технологии магнитных покрытий и магнитных головок, емкость винчестеров повысилась до нескольких десятков гигабайт, а емкость дискет - до сотен мегабайт (правда, стандартным пока считается объем дискеты 1,44 Мбайт).

Подробное описание работы дисководов и принципов хранения информации на магнитных дисках потребовало бы слишком много места, к тому же оно не имеет прямого отношения к теме данной книги, поэтому мы здесь приведем только некоторые особенности организации обмена информацией.

Важный параметр любого дисковода - это его быстродействие, которое определяется, с одной стороны, достижимой скоростью записи/чтения информации, а с другой - временем позиционирования (то есть установки в нужное положение) магнитной головки дисковода. Немаловажно и быстродействие интерфейса, осуществляющего связь компьютера с накопителем, а также применяемые способы организации обмена информацией.

В настоящее время наиболее распространены два стандартных интерфейса для винчестеров:

IDE (Integrated Drive Electronics) - интерфейс для дисковых накопителей, официальное название - ATA (AT Attachment). Именно этот интерфейс применяется в качестве основного в персональных компьютерах. Скорость обмена может достигать 133 Мбайт/с.

SCSI (Small Computer System Interface) - малый компьютерный системный интерфейс. В принципе, он используется и для подключения других устройств (например, сканеров), но основное его применение - для дисководов. Как правило, данный интерфейс изначально включается в структуру только некоторых серверов, а для его реализации н персональных компьютерах необходима дополнительная плата расширения (кстати, довольно дорогая). Скорость обмена может достигать 320 Мбайт/с.

Сравнение этих двух интерфейсов (SCSI и IDE) показывает, что и однопользовательских автономных системах гораздо эффективнее применять IDE, а в многопользовательских и многозадачных системах выгоднее становится SCSI. Стоит также отметить, что установка SCSI сложнее и дороже, чем IDE. Кроме того, при использовании винчестера с интерфейсом SCSI в качестве сетевого диска могут возникнуть проблемы. Преимуществом SCSI является большее количество максимально подключенных дисководов и возможность одновременного выполнения ими подаваемых команд. А что касается скорости обмена, то она в основном определяется не пропускной способностью интерфейса, а другими параметрами, в частности скоростью используемой системной шины. Поэтому точно сказать, дисковод с каким интерфейсом будет работать быстрее, в общем случае невозможно. К тому же в случае IDE реальная скорость очень сильно зависит от схемотехнических решений, использованных изготовителем дисководов.



Для ускорения обмена с дисками широко применяется кэширование, принцип которого близок к принципу кэширования оперативной памяти. Точно гак же кэширование диска позволяет за счет использования более быстрой электронной памяти, чем дисковая память, существенно увеличить среднюю скорость обмена с диском. Здесь принципиально важны несколько моментов:

В большинстве случаев каждое следующее обращение к диску будет обращением к следующему по порядку блоку информации на диске;

Для позиционирования головки требуется заметное время (порядка миллисекунды);

Искомый сектор на диске может не оказаться под головкой после ее установки, и потребуется ждать его прихода.

Все это приводит к тому, что оказывается гораздо выгоднее содержать в оперативной памяти (дисковой кэш-памяти) копию части диска и обращаться на диск только в том случае, если нужной информации нет в кэш-памяти. Для обмена с кэш-памятью, каки вслучае оперативной памяти, используются методы Write Through (WT) и Write Back (WB). Так как винчестер - это блочно-

ориентированное устройство (размер блока равен 512 байт), то данные передаются в кэш блоками. При заполнении кэш-памяти в нее переписываются не только необходимые в данный момент блоки, но и следующие за ними (метод «чтение вперед», Read Ahead), дальнейшее обращение к которым наиболее вероятно. Особенно эффективно кэширование при оптимизации жесткого диска (его дефрагментации), когда каждый файл расположен в группе секторов, следующих друг за другом. Как и в случае кэширования памяти, при кэшировании диска используется механизм LRU, позволяющий обновлять те блоки, к которым дольше всего не было обращений. Кэш-память диска обычно располагается на плате специального кэш-контроллера дисковода, и ее объем может достигать 16 Мбайт.

Для сопряжения с компьютером дисковода для гибких дисков (флоппи-дисков, дискет) традиционно применяется специальный интерфейс SA-400, разработанный в начале 70-х годов. Контроллер присоединяется к дисководу 34-проводным кабелем, причем к одному контроллеру обычно присоединяется до двух дисководов (теоретически их может быть четыре). На каждом накопителе, как правило, имеется четыре перемычки DSO-DS3 (Drive Select) для выбора номера данного дисковода. Данные по интерфейсу передаются в последовательном коде в обоих направлениях (по разным проводам). Скорость передачи данных для дискет емкостью 1,44 Мбайт составляет 500 Кбит/с. Как и контроллер жестких дисков, контроллер гибких дисков в современных компьютерах установлен на системной плате (для старых моделей компьютеров выпускались специальные платы расширения).

В новых компьютерах стал стандартным дисковод на оптических компакт-дисках (CD-ROM). На этих дисках информация хранится в виде зон с разными степенями отражения света от поверхности диска. Вместо множества концентрических дорожек на поверхности диска (как у магнитного диска, винчестера), в случае компакт-диска применяется всего одна спиральная дорожка. Для чтения информации применяется миниатюрный лазер. Диски имеют диаметр 5 дюймов и стандартный объем 780 Мбайт. Скорость обмена информацией с компакт-дисками сейчас составляет от 2,4 Мбайт/с (для дисководов со скоростью 16х) до 3,6 Мбайт/с (для дисководов со скоростью 52х). Используются интерфейсы IDE и SCSI. На компакт-диск записываются не только данные, «о и звук, а также изображение. Существуют компакт-диски с возможностью однократной записи или даже многократной перезаписи информации с компьютера. Возможно, дисководы, поддерживающие такие диски, вскоре войдут в стандартную комплектацию персонального компьютера. Правда, скорость записи информации на компакт-диски обычно существенно ниже скорости чтения информации.

Персональный компьютер: внешняя память

Внешняя память - это память, реализованная в виде внешних, относительно материнской платы, устройств с разными принципами хранения информации и типами носителя, предназначенных для долговременного хранения информации. В частности, в внешней памяти хранится все программное обеспечение компьютера. Устройства внешней памяти могут размещаться как в системном блоке компьютера, так и в отдельных корпусах. Физически, внешняя память реализована в виде накопителей. Накопители - это запоминающие устройства, предназначенные для продолжительного (что не зависит от электропитания) хранения больших объемов информации. Емкость накопителей в сотни раз превышает емкость оперативной памяти или вообще неограниченная, когда речь идет о накопителях со сменными носителями.

Накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители с сменными и постоянными носителями. Привод - это объединение механизма чтения-записи с соответствующими электронными схемами управления. Его конструкция определяется принципом действия и видом носителя. Носитель - это физическая среда хранения информации, по внешнему виду может быть дисковым или ленточным. По принципу запоминания различают магнитные, оптические и магнитооптичческие носители. Ленточные носители могут быть лишь магнитными, в дисковых носителях используют магнитные, магнитооптические и оптические методы записи-считывания информации.

Самыми распространенными являются накопители на магнитных дисках, которые делятся на накопители на жестких магнитных дисках (НЖМД) и накопители на гибких магнитных дисках (НГМД), и накопители на оптических дисках, такие как накопители CD-ROM, CD-R, CD-RW и DVD-ROM.

Накопители на жестких магнитных дисках (НЖМД)

НЖМД - это основное устройство для долговременного хранения больших объемов данных и программ. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive). Внешне, винчестер представляет собой плоскую, герметически закрытую коробку, внутри которой находятся на общей оси находятся несколько жестких алюминиевых или стеклянных пластинок круглой формы. Поверхность любого из дисков покрыта тонким ферромагнитным слоем (вещество, которое реагирует на внешнее магнитное поле), собственно на нем хранятся записанные данные. При этом запись проводится на обе поверхности каждой пластины (кроме крайних) с помощью блока специальных магнитных головок. Каждая головка находится над рабочей поверхностью диска на расстоянии 0,5-0,13 мкм. Пакет дисков вращается непрерывно и с большой частотой (4500-10000 об/мин), поэтому механический контакт головок и дисков недопустим.

Запись данных в жестком диске осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля в щели между поверхностью и головкой, что приводит к изменению стационарного магнитного поля ферромагнитных частей покрытия диска. Операция считывания происходит в обратном порядке. Намагниченные частички ферромагнитного покрытия являются причиной электродвижущей силы самоиндукции магнитной головки. Электромагнитные сигналы, которые возникают при этом, усиливаются и передаются на обработку.

Работой винчестера руководит специальное аппаратно-логическое устройство - контроллер жесткого диска. В прошлом это была отдельная дочерняя плата, которую подсоединяли через слоты к материнской плате. В современных компьютерах функции контроллера жесткого диска выполняют специальные микросхемы, расположенные в чипсете.

В накопителе может быть до десяти дисков. Их поверхность разбивается на круги, которые называются дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт: 512 отведено для записи нужной информации, остальные под заголовок (префикс), определяющий начало и номер секции и окончание (суффикс), где записана контрольная сумма, нужная для проверки целостности хранимых данных. Секторы и дорожки образуются во время форматирования диска. Форматирование выполняет пользователь с помощью специальных программ. На неформатированный диск не может быть записана никакая информация. Жесткий диск можно разбить на логические диски. Это удобно, поскольку наличие нескольких логических дисков упрощает структуризацию данных, хранящихся на жестком диске.

Существует огромное количество разных моделей жестких дисков многих фирм, таких как Seagate, Maxtor, Quantum, Fujitsu и т.д. Для обеспечения совместимости винчестеров, разработаны стандарты на их характеристики, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов. Распространенными являются стандарты интерфейсов IDE (Integrated Drive Electronics) или ATA и более продуктивные EIDE (Enhanced IDE) и SCSI (Small Computer System Interface). Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков.

Среди других параметров, которые влияют на быстродействие HDD следует отметить следующие:

  • скорость обращения дисков - в наше время выпускаются накопители EIDE с частотой обращения 4500-7200 об/мин, и накопители SCSI - 7500-10000 об/мин;
  • емкость кэш-памяти - во всех современных дисковых накопителях устанавливается кэш-буфер, ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт;
  • среднее время доступа - время (в миллисекундах), на протяжении которого блок головок смещается с одного цилиндра на другой. Зависит от конструкции привода головок и составляет приблизительно 10-13 миллисекунд;
  • время задержки - это время от момента позиционирования блока головок на нужный цилиндр до позицирования конкретной головки на конкретный сектор, другими словами, это время поиска нужного сектора;
  • скорость обмена - определяет объемы данных, которые могут быть переданы из накопителя к микропроцессору и в обратном направлении за определенные промежутки времени; максимальное значение этого параметра равно пропускной способности дискового интерфейса и зависит от того, какой режим используется: PIO или DMA; в режиме PIO обмен данными между диском и контроллером происходит при непосредственном участии центрального процессора, чем больше номер режима PIO, тем выше скорость обмена; работа в режиме DMA (Direct Memory Access) разрешает передавать данные непосредственно в оперативную память без участия процессора; скорость передачи данных в современных жестких дисках колеблется в диапазоне 30-60 Мбайт/с.

Накопители на гибких магнитных дисках (НГМД)

НГМД или дисковод вмонтирован в системный блок. Гибкие носители для НГМД выпускают в виде дискет (другое название флоппи-диск). Собственно, носитель - это плоский диск со специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем и помещенной в защитный конверт с подвижной задвижкой в верхней части. Дискеты используются, в основном, для оперативного переноса небольших объемов информации с одного компьютера на другой. Данные, записанные на дискете можно защитить от стирания или перезаписи. Для этого нужно передвинуть маленькую защитную задвижку в нижней части дискеты таким образом, чтобы образовалось открытое окошко. Для того, чтобы разрешить запись, эту задвижку следует переместить назад и закрыть окошко.

Лицевая панель дисковода выведена на переднюю панель системного блока, на ней расположены карман, закрытый шторкой, куда вставляют дискету, кнопка для вынимания дискеты и лампочка-индикатор. Дискета вставляется в дисковод верхней задвижкой вперед, ее нужно вставить в карман накопителя и плавно продвинуть вперед до щелчка. Правильное направление вставления дискеты помечено стрелкой на пластиковом корпусе. Чтобы вынуть дискету из накопителя, нужно нажать на его кнопку. Световой индикатор на дисководе показывает, что устройство занято (если лампочка горит, вынимать дискету не рекомендуется). В отличие от жесткого диска, диск в НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.

Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки получаются во время форматирования дискеты. Сейчас дискеты поставляются отформатироваными.

Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. По размерам различают 3,5-дюймовые дискеты и 5,25-дюймовые дискеты (сейчас уже не используются). Плотность записи может быть простой SD (Single Density), двойной DD (Double Density) и высокой HD (High Density). Стандартная емкость 3,5-дюймовой дискеты - 1,44 Мбайт, возможно использование дискет емкостью 720 Кбайт. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.

Во время пользования дискетой следует придерживаться таких правил:

  • не касаться рабочей поверхности дискеты;
  • не выгибать дискету;
  • не снимать металлическую задвижку, загрязненная дискета может повредить головки;
  • сохранять дискеты подальше от источника магнитных полей;
  • перед использованием проверить дискету на наличие вирусов с помощью антивирусной программы.

Накопители на оптических дисках

Накопитель CD-ROM

Начиная с 1995 года в базовую конфи-гурацию персонального компьютера вместо дисководов на 5,25 дюймов начали включать дисковод CD-ROM. Аббревиатура CD-ROM (Compact Disk Read Only Memory) переводится как постоянное запоминающее устройство на основе компакт-дисков. Принцип действия этого устройства состоит в считывании цифровых данных с помощью лазерного луча, который отражается от поверхности диска. В качестве носителя информации используется обычный компакт-диск CD. Цифровая запись на компакт-диск отличается от записи на магнитные диски высокой плотностью, поэтому стандартный CD имеет емкость порядка 650-700 Мбайт. Такие большие объемы характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относятся к аппаратным средствам мультимедиа. Кроме мультимедийних изданий (электронные книги, энциклопедии, музыкальные альбомы, видеофильмы, компьютерные игры) на компакт-дисках распространяется разнообразное системное и прикладное программное обеспечения больших объемов (операционные системи, офисные пакеты, системы программирования и т.д.)

Компакт-диски изготовляют из прозрачного пластика диаметром 120 мм. и толщиной 1,2 мм. На пластиковую поверхность напыляется слой алюминия или золота. В условиях массового производства запись информации на диск происходит путем выдавливания на поверхности дорожки, в виде ряда углублений. Такой подход обеспечивает двоичную запись информации. Углубление (pit - пит), поверхность (land - лэнд). Логический нуль может быть представлен как питом, так и лэндом. Логическая единица кодируется переходом между питом и лэндом. От центра к краю компакт-диска нанесена единственная дорожка в виде спирали шириной 4 микрона с шагом 1,4 микрона. Поверхность диска разбита на три области. Начальная (Lead-In) расположена в центре диска и считывается первой. В ней записано содержимое диска, таблица адресов всех записей, метка диска и другая служебная информация. Средняя область содержит основную информацию и занимает большую часть диска. Конечная область (Lead-Out) содержит метку конца диска.

Для штамповки существует специальная матрица-прототип (мастер-диск) будущего диска, которая выдавливает дорожки на поверхности. После штамповки, на поверхность диска наносят защитную пленку из прозрачного лака.

Накопитель CD-ROM содержит:

  • электродвигатель, который вращает диск;
  • оптическую систему, состоящую из лазерного излучателя, оптических линз и датчиков и предназначенную для считывания информации с поверхности диска;
  • микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.
  • Компакт-диск раскручивается электродвигателем. На поверхность диска с помощью привода оптической системы фокусируется луч из лазерного излучателя. Луч отражается от поверхности диска и сквозь призму подается на датчик. Световой поток превращается в электрический сигнал, который поступает в микропроцессор, где он анализируется и превращается в двоичный код.

Основные характеристики CD-ROM:

  • скорость передачи данных - измеряется в кратных долях скорости проигрывателя аудио компакт-дисков (150 Кбайт/сек) и характеризует максимальную скорость с которой накопитель пересылает данные в оперативную память компьютера, например, 2-скоростной CD-ROM (2x CD-ROM) будет считывать данные с скоростью 300 Кбайт/сек., 50-скоростной (50x) - 7500 Кбайт/сек.;
  • время доступа - время, нужное для поиска информации на диске, измеряется в миллисекундах.
  • Основной недостаток стандартных CD-ROM - невозможность записывания данных, но существуют устройства однократной записи CD-R и многоразовой записи CD-RW.

Накопитель CD-R (CD-Recordable)

Внешне похожи на накопители CD-ROM и совместимые с ними по размерам дисков и форматам записи. Позволяют выполнить одноразовую запись и неограниченное количество считываний. Запись данных осуществляется с помощью специального программного обеспечения. Скорость записи современных накопителей CD-R составляет 4х-8х.

Накопитель CD-RW (CD-ReWritable)

Используются для многоразовой записи данных, причем можно как просто дописать новую информацию на свободное пространство, так и полностью перезаписать диск новой информацией (предудущие данные уничтожаются). Как и в случае с накопителями CD-R, для записи данных необходимо установить в системе специальные программы, причем формат записи совместимый с обычным CD-ROM. Скорость записи современных накопителей CD-RW составляет 2х-4х.

Накопитель DVD (Digital Video Disk)

Устройство для чтения цифровых видеозаписей. Внешне DVD-диск похож на обычный CD-ROM (диаметр - 120 мм, толщина 1,2 мм), однако отличается от него тем, что на одной стороне DVD-диска может быть записано до 4,7 Гбайт, а на двух - до 9,4 Гбайт. В случае использования двухслойной схемы записи на одной стороне можно разместить уже до 8,5 Гбайт информации, соответственно на двух сторонах - около 17 Гбайт. DVD-диски допускают перезапись информации.

Важнейшим фактором, сдерживающим широкое применение накопителей CD-R, CD-RW и DVD, является высокая стоимость как их самих, так и сменных носителей.

Контрольные вопросы

Что такое внешняя память? Какие разновидности внешней памяти вы знаете?

Что такое жесткий диск? Для чего он предназначен? Какую емкость имеют современные винчестеры?

Каким образом осуществляются операции чтения и записи в НЖМД?

В чем состоит операция форматирования магнитных дисков?

Какие есть типы стандартных дисковых интерфейсов?

Какие параметры влияют на быстродействие винчестера? Каким образом?

Что такое флоппи-диск? Что общее и различное между ним и жестким диском?

Каких правил следует придерживаться во время пользования дискетой?

Какие вы знаете разновидности накопителей на оптических дисках? Чем они различаются между собою?

Каким образом происходит считывание информации с компакт-дисков?

В чем измеряется скорость передачи данных в накопителях на оптических носителях?

Обычно, включая компьютер, мы даже не задумываемся о том, какие процессы происходят внутри него во время загрузки. Однако то, что на первый взгляд кажется простой процедурой, на самом деле содержит в себе множество сложнейших вычислений. При включении задействуются все основные составляющие компьютера: материнская плата, процессор, память - внутренняя и внешняя и т. д. Подробнее о каждой из перечисленных составляющих компьютера, а также об эволюции сменных носителей можно будет узнать, просмотрев данный урок.

Она находится в системном блоке. На ней располагается центральный процессор (ЦП), контроллеры (например, управления памяти, управления внешними устройствами). Материнская плата - это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера либо сервера начального уровня.

К ней подсоединяется такие модули компьютера, как центральный процессор, контроллер оперативной памяти (ОЗУ и ПЗУ), контроллеры базовых элементов ввода-вывода (BIOS). Материнская плата непосредственно определяет и координирует работу таких различных по своей сути и функциональности комплектующих, как процессор, оперативная память, платы расширения и различные накопители данных.

Также в материнскую плату встроен генератор тактовой частоты, который синхронизирует работу всех устройств компьютера (Рис. 2).

Рис. 2. Микросхема тактового генератора, установленного в ноутбуке ()

Такт - это промежуток времени между двумя импульсами генератора тактовой частоты. Для выполнения одной элементарной операции необходимы несколько тактов. Тактовая частота первых ПК составляла 4,77 МГц. Современные компьютеры имеют частоту 2,5 ГГц. Важная характеристика материнской платы - это ее производительность. Она определяется тактовой частотой и разрядностью данных, передаваемых одновременно по общей шине. По общей шине передаются управляемые сигналы от процессора к другим устройствам компьютера. Архитектура, производительность материнских плат постоянно совершенствуется. Увеличивается количество портов.

Порт - это многоразрядный вход и выход, через который подключаются другие устройства компьютера. Эти порты выводятся на заднюю, переднюю либо боковую панель системного блока. Наиболее известные порты - это LPT-порт (параллельный), COM-порт (последовательный). Через эти порты подключаются принтеры, мыши, клавиатуры и т. д., но со временем появился USB-порт (Universal Serial Bus), к которому стали подключать все эти устройства.

Рис. 3. Различные порты компьютера ()

Основной составляющей материнской платы является процессор (Рис. 4). Он отвечает за обработку информации и управления всеми модулями компьютера. Без него невозможна работа современного ПК.

Центральный процессор (ЦП; также центральное процессорное устройство - ЦПУ; англ. central processing unit, CPU, дословно - «центральное обрабатывающее устройство») - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

Производительность процессора характеризуется такими параметрами:

  • степень интеграции;
  • внутренняя и внешняя разрядность обрабатываемых данных;
  • тактовая частота;
  • память, к которой может адресоваться ЦП.

Степень интеграции микросхемы показывает, сколько транзисторов (самый простой элемент любой микросхемы) может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизительно 3 млн на 3,5 кв. см, у Pentium Pro - 5,5 млн.

Внутренняя разрядность процессора определяет, какое количество бит он может обрабатывать одновременно при выполнении арифметических операций (в зависимости от поколения процессоров - от 8 до 32 бит).

Внешняя разрядность процессора определяет, сколько бит одновременно он может принимать или передавать во внешние устройства (от 16 до 64 бит в современных процессорах).

Тактовая частота определяет быстродействие процессора. Для процессора различают внутреннюю (собственную) тактовую частоту (с таким быстродействием выполняются внутренние простейшие операции) и внешнюю (определяет скорость передачи данных по внешней шине).

Количество адресов оперативного запоминающего устройства (ОЗУ), доступное процессору, определяется разрядностью адресной шины.

Рис. 4. Центральный процессор персонального компьютера ()

Для теплоотвода и предотвращения перегрева микропроцессора, применяются пассивные радиаторы либо так называемые кулеры. Кулер - система воздушного охлаждения - совокупности вентилятора и радиатора, устанавливаемых на электронные компоненты компьютера с повышенным тепловыделением (центральный процессор, графический процессор, микросхемы чипсета, блок питания).

Большинство современных процессоров для персональных компьютеров основаны на той или иной версии циклического процесса последовательной обработки данных, изобретенного Джоном фон Нейманом.

Еще одним важным модулем компьютера является память . Она делится на внутреннюю и внешнюю . К внутренней памяти относится прежде всего постоянная память (или ПЗУ - постоянно запоминающее устройство, ROM - Read-only memory). Примером такой памяти является модуль BIOS. В него внедрена программа тестирования компьютера и первичной загрузки ОС.

Также к внутренней памяти относится оперативная память. Ее называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory) (Рис. 5).

Рис. 5. Оперативная память персонального компьютера ()

Оперативная память (англ. Random Access Memory, память с произвольным доступом; комп. жарг. «память», «оперативка») - энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции (Рис. 6). Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, вновь могут быть загружены в память. От объема оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Рис. 6. Простейшая схема взаимодействия оперативной памяти с центральным процессором ()

Кроме внутренней памяти есть еще и внешняя. Внутренняя память (кроме постоянной) энергозависима. Для того чтобы сохранить результат работы за компьютером, используют внешнюю память. Она не такая быстрая по сравнению с оперативной, но их объемы несопоставимы. По аналогии с указанными выше свойствами внутренней памяти свойства внешней памяти можно описать так:

  • внешняя память энергонезависима . Информация в ней сохраняется независимо от того, включен или выключен компьютер, вставлен носитель в компьютер или лежит на столе;
  • внешняя память медленнее по сравнению с оперативной; в порядке возрастания скорости чтения/записи информации, устройства внешней памяти располагаются так: магнитные ленты - магнитные диски - оптические диски;
  • объем информации, помещающейся во внешней памяти, больше, чем во внутренней; а с учетом возможности смены носителей неограничен.

Носителями внешней памяти являются различные диски: жесткие, гибкие, оптические. Первыми носителями были гибкие диски (дискеты). Это портативный сменный носитель информации, используемый для многократной записи и хранения данных. Представляет собой помещенный в защитный пластиковый корпус диск, покрытый ферромагнитным слоем (Рис. 7).

Рис. 7. Дискета в разобранном виде ()

При внимательном рассмотрении дискеты мы можем заметить дорожки. Перед использованием дискета форматируется. Форматирование дискеты заключается в разметке чистой дискеты на круговые дорожки и сектора. Чтобы начать работать с чистой дискетой, ее нужно сначала отформатировать, разметить. Отформатированная дискета имеет специальные, невидимые для пользователя во время работы разметочные записи. Вся дискета разбивается на круговые дорожки, а дорожки - на сектора. Стандартные трехдюймовые дискеты форматируются на 1,44 Мбайт.

Для считывания информации с дискет используется дисковод. На многих современных компьютерах он уже редко входит в полную комплектацию. Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Дискеты были массово распространены начиная с 1970-х и до конца 1990-х годов (Рис. 8.), уступив место более емким и удобным CD и DVD-накопителям.

Рис. 8. Различные виды гибких дисков, начиная от самых первых моделей и заканчивая современными ()

Еще одним из устройств внешней памяти является жесткий диск . Также его иногда называют винчестер, винт.

Жесткий диск - запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве современных компьютеров (Рис. 9).

Рис. 9. Жесткий диск, вид изнутри ()

Конструкция винчестера представляет собой совокупность металлических дисков, которые покрыты особым веществом, способным сохранять влияние магнитного поля. Современные жесткие диски имеют от 1 до 3 таких дисков. Эти диски надежно сбалансированы и имеют гладкую поверхность из-за большой скорости их вращения. Запись на диск осуществляется специальными магнитными головками, обычно по одной с каждой стороны диска. Они реагируют на изменение магнитного поля через изменение силы тока, который возбуждается в головке. Сигнал считывается и преобразуется в цифровую форму.

Основными характеристиками жестких дисков являются:

  • интерфейс (техническое средство взаимодействия 2-х разных устройств);
  • емкость (количество данных, которые могут храниться накопителем);
  • физический размер (размеры креплений и т. д.);
  • время произвольного доступа (среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска);
  • скорость вращения шпинделя (количество оборотов шпинделя в минуту);
  • надежность (определяется как среднее время наработки на отказ);
  • количество операций ввода-вывода в секунду;
  • объем буфера (промежуточной памяти, предназначенной для сглаживания различий скорости чтения/записи и передачи по интерфейсу).

По причине того, что жесткие диски являются прежде всего стационарными, т. к. очень чувствительны к любым воздействиям извне (удары, падения и т. д.), на смену им пришли внешние жесткие диски, которые подключаются к системному блоку через USB-порт и на которых можно переносить большие объемы информации. Объем таких дисков может быть от нескольких десятков гигабайт до нескольких терабайт. Объемы носителей внешней памяти постоянно растут. Помимо объема, важной характеристикой внешней памяти являются их физические размеры. Такая характеристика называется форм-фактор. Чем меньше физические размеры носителя, тем меньше потребляемая мощность.

На сегодняшний день все более популярными становится такой вид носителей информации как USB -флеш-накопитель , или по-простому «флешка» .

USB-флеш-накопитель - запоминающее устройство, использующее в качестве носителя флеш-память и подключаемое к компьютеру или иному считывающему устройству по интерфейсу USB.

Основное назначение USB-накопителей - хранение, перенос и обмен данными, резервное копирование, загрузка операционных систем (LiveUSB) и др. USB-флешки обычно съемные и перезаписываемые.

Флешка состоит из следующих частей (Рис. 10):

  • USB-интерфейс (Стандарт-А) - обеспечивает физическое соединение с компьютером;
  • контроллер - небольшой микроконтроллер со встроенными ROM и RAM.
  • NAND-чип - хранит информацию;
  • осциллятор - генерирует синхронизирующий сигнал (12 МГц) и управляет выводом данных;
  • на большинстве флешек используется файловая система FAT12, FAT16, FAT32, или ExFat.


Рис. 10. Устройство USB-флеш-накопителя ()

Обычно устройство имеет вытянутую форму и съемный колпачок, прикрывающий разъем (Рис. 11). Современные флешки могут иметь самые разные размеры и способы защиты разъема. Обычный размер - 3-5 см, вес - меньше 60 г. Объем памяти на флешках постоянно растет. Если не так давно предельными значениями объема памяти для флешки считались 2 Гб, 4 Гб, то сейчас эти значения выросли до 32 Гб, 64 Гб. Безусловно, с развитием технологий растет и объем памяти флеш-накопителей.

Рис. 11. Внешний вид USB-флеш-накопителя ()

Современные компьютеры оснащены дисководами (Рис. 12) для чтения компакт-дисков. Это могут быть CD -диски и DVD -диски.

Рис. 12. Оптический привод современных CD и DVD дисков ()

Оптический привод - устройство, имеющее механическую составляющую, управляемую электронной схемой, и предназначенное для считывания и (в некоторых моделях) записи информации с оптических носителей информации в виде пластикового диска с отверстием в центре (компакт-диск, DVD и т. д.); процесс считывания/записи информации с диска осуществляется при помощи лазера.

Компакт-диск (CD -диск , англ. Compact Disc) - оптический носитель информации в виде пластикового диска с отверстием в центре. Дальнейшим развитием компакт-дисков стали DVD и Blu-ray, прообразом стала граммофонная пластинка.

Первыми появились CD - ROM (Compact Disc Read-Only Memory) (Рис. 13), т. е. устройство только для чтения. В скором времени это перестало соответствовать действительности, т. к. появились пишущие CD-ROM, на них можно было, кроме чтения, осуществлять запись информации. Точно также получилось и при появлении DVD - ROM - вначале были только читаемые DVD-приводы, а затем появились записывающие.

Внешних отличий у этих двух видов носителей информации не так много. Однако, помимо всего того, что умеет делать CD-ROM, DVD-ROM способен читать DVD-диски различных форматов. Принципы записи DVD- и CD-R-форматов во многом схожи. Самое основное отличие - это, естественно, размер записываемой информации. Если на обычный CD-диск можно записать до 800 Мб, то на один DVD-диск можно записать от 4,7 Гб.

В DVD употребляется лазер с наименьшей длиной волны, что позволило значительно прирастить плотность записи. Кроме этого, DVD предполагает возможность двухслойной записи информации, другими словами, на поверхности компакта находится один слой, поверх которого наносится очередной, полупрозрачный, и 1-й считывается через 2-й параллельно.

Список литературы

1. Босова Л.Л. Информатика и ИКТ: Учебник для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2010.

3. В.И. Левин, Носители информации в цифровом веке. - КомпьютерПресс, 2000., 256 стр.

4. Танненбаум Э. Архитектура компьютера. - 5-е изд. - СПб.: Питер, 2007. - 844 с.

2. Интернет-сайт «КомпьютерПресс» ()

3. Интернет-сайт informatika.sch880.ru ()

Домашнее задание

1. Глава 2, §2.1, 2.2. Босова Л.Л. Информатика и ИКТ: Учебник для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Какая составляющая является центральной частью ПК? Опишите ее основные функции.

3. Как называются входы и выходы, при помощи которых различные устройства подключаются к компьютеру?

4. Какие функции выполняет центральный процессор ПК?

5. Для чего компьютеру нужны два вида памяти: внешняя и внутренняя?

6. Назовите устройства внешней памяти компьютера.

7. Какие существуют типы оптических дисков?

Лучшие статьи по теме