Матч 3 начало работы. Установка ПО Mach3. Проблемы при инсталляции
Эра технологий - Информационный сайт

Матч 3 начало работы. Установка ПО Mach3. Проблемы при инсталляции

Mach3 программа для управление станком ЧПУ – программа, разработанная для автономного контроля станочным оборудованием с числовым программным управлением. Программа является одинаково эффективной для всех типов станков, независимо от того, для каких целей используется прибор: фрезеровки, гравировки или токарной обработки. Данная программа является одной из самых популярных разработок подобного типа.

Предназначение

Полное название программы АртСофт Mach3. Она используется на компьютерных устройствах, подключенных к станкам. Для запуска программы на компьютере должна быть установлена операционная система от компании Майкрософт. Приложение и софт были созданы американским производителем. Его популярность связана с простотой использования, которая обеспечивает возможность применения как на производстве, так и в быту.

Отдав предпочтение управляющей программе, можно запустить приборы:

  • зубонарезной;
  • гравировочный.

Для того чтобы Mach3 была запущена на компьютере, он должен соответствовать минимальным требованиям. Операционная система Windows – не старее двухтысячного года. Тактовая частота процессора – не менее 1 гигагерц. Минимальный объем оперативной памяти – 512 мегабайт. Память видеокарты – не менее 64 мегабайт. Объема свободной памяти на жестком диске – не менее 1 гигабайта. Наличие порта LPT и не менее двух разъемов USB.

Практически каждое современное устройство совместимо с Mach3, благодаря чему ее можно применять как на крупных предприятиях, так и в домашних мастерских.

Приложение аналогичным образом управляется на станке разной конструкции. Разница в работе может быть связана исключительно с отличиями в характеристиках и габаритах приборов.

Особенности

Mach3 взаимодействует с любыми станками, имеющими систему числового программного управления. Программу можно запустить не только на стационарных компьютерах, но и ноутбуках. Для этого достаточно подключить агрегат к станку. Система Mach3 представляет собой скорее драйвер, чем сложное приложение. После его установки, на компьютере можно будет самостоятельно создавать управляющие программы.

После того, как их создание будет завершено, они загружаются в модульную память, с которой связано числовое программное управление. Основная задача компьютера заключается в настройке параметров для работы со станочным оборудованием.

Через ПК можно:

  • автоматизировать рабочий инструмент;
  • управлять его движением;
  • контролировать перемещение по заданной траектории.

Программа работает в качестве обычного оконного приложения, и не перегружает операционную систему. Перед ее использованием рекомендуется ознакомиться с инструкцией. На обучение не потребуется много времени.

Основными достоинствами Mach3 являются:

  • широкие функциональные возможности;
  • интуитивно понятный интерфейс;
  • грамотный принцип управления.

Инструкция доступна в различных языках, включая русский. Благодаря этому с обучением не возникнет трудностей.

Характеристики

Приложение способно управлять одновременно сразу шестью координатами. Софт оснащен встроенным программным обеспечением, которое позволяет загружать файлы прямым способом. Допускается загрузка файлов в четырех форматах:

При необходимости интерфейс приложения можно изменить. С его помощью прибор управляет частотой вращения шпинделя. Релейный контроль осуществляется на нескольких уровнях. Обработка записывается системой видеонаблюдения, которая передает запись в специальное окно софта. Для удобства оконный режим можно переключить в полноэкранный. Созданная программа совместима также с современными сенсорными приборами.

На экране имеются:

  • кнопки управления программой;
  • отображение управляющей программы;
  • элементы управления осями;
  • кнопки «Мастера»;
  • кнопки управления экраном.

«Мастера» – одно из основных достоинств приложения. Они представлены минипрограммами для расширения возможностей Mach3. Они предназначены для выполнения простых задач, которые позволят пользователю сэкономить время. Допускается самостоятельное создание минипрограмм.

Они используются для:

  • нарезки зубьев;
  • сверления;
  • отцифровки;
  • гравировки текста;
  • выборки пазов;
  • поверхностной обработки;
  • обработки обычных контуров.

На экран выводится вся информация о рабочем инструменте. Для регулировки скорости шпинделя достаточно воспользоваться кнопками «+» и «-». Кнопки и режимы подписаны на английском языке, но в инструкции написано их обозначение.

Подготовка

От правильной настройки программы зависит не только точность и качество выполнения обработки, но и сохранность оборудования. Если настройка будет выполнена с ошибками, результатом может стать сломанный управляемый инструмент, модуль для ЧПУ или другие элементы.

Подготовка выполняется в несколько шагов:

  • необходимо полностью подключить станки и проверить их работоспособность (проверку можно выполнить как при помощи стандартной диагностики, так и с использованием различных программ);
  • затем производится установка Mach3 (перед установкой следует убедить, что компьютерное устройство соответствует минимальным требованиям программы);
  • рекомендуется использовать лицензионные версии приложения (по причине высокой стоимости лицензионного приложения и английского софта часто используются пиратские русифицированные сборки – однако они могут быть повреждены, и способны нанести вред станочному оборудованию);
  • работа операционной системы должна быть оптимизирована (для этого рекомендуется отключить сторонние приложения, включая те, которые работают в фоновом режиме);
  • при работе программы не рекомендуется запускать другие приложения (в особенности это касается игр, поскольку они способны нагрузки компьютер).

Если компьютер планируется использовать не только для работы с Mach3, жесткий диск следует разделить на подразделы. Данный шаг необходим, если ПК будет применяться в создании управляющих программ, или других целей. Следует установить отдельную операционную систему, на которой будет эксплуатироваться приложение. Другие приложения ставить на эту систему не нужно.

Использование

Перед настройкой программы следует внимательно изучить инструкцию, кнопки и их значение. Mach3 взаимодействует с разными станками, поэтому для каждого типа следует открыть собственную вкладку с параметрами. С покупкой лицензионной версии инструкция следует в комплекте. Если же используется пиратская версия, или же инструкция была утеряна, для обучения ее можно в свободном доступе скачать в интернете.

Перед обработкой деталей требуется включить станок и убедиться, что он работает нормально. Об этом будет говорить отсутствие рывков и перебоев в работе. Затем выполняется прогон агрегата. Приложение позволяет выполнить прогон в автоматическом режиме, нажав на специальную кнопку. С ее помощью пробный режим можно как включить, так и выключить. Управлять рабочим механизмом аппарата можно при помощи мышки.

Управление бывает двух типов:

  • пошагового;
  • непрерывного.

При использовании первого типа станок приводится в рабочее состояние нажатием клавиши, и выполняет обработку по заданному отрезку. Второй тип характеризуется работой станка, пока оператор будет зажимать клавишу. Если клавишу отпустить, обработка прекратится.

Mach3 – это программа, которая обеспечивает управляет станками с ЧПУ. Этот софт подходит для устройств разного профиля.

Назначение

Mach3 является узкопрофильной программой, которая нужна специалистам в конкретной области. Программное обеспечение используют для работы со станками с ЧПУ. В этом софте вы можете управлять станками разных видов специализации.

Установив Mach3, вы сделаете со своего компьютера «пункт управления», который облегчит работу со станком и автоматизирует процесс настройки определённых функций.

Технические особенности

В Mach3 есть несколько особенностей. Эта программа не требует много места на жёстком диске компьютера. Для инсталляции софта нужно всего 1 Гб незанятого пространства на разделе компьютера, а также чуть больше 500 Мб оперативной памяти.

Не нужно забывать, что софт не работает на OS Windows, которые созданы после «семерки». Кроме того, программа рассчитана на коммерческое использование. После покупки лицензии и активации софта вы сможете воспользоваться дополнительными функциями.
Если вы не хотите покупать официальную версию программного обеспечения, вы можете протестировать Mach3 в демо - режиме, оценив все возможности и функции.

Графическая оболочка

Графическая оболочка программы не простая и содержит множество кнопок. Если вы неопытный пользователь, а особенно, не знакомы с технически софтом, то вам придётся потратить время на изучение интерфейса. В Mach3 нет русского языка, поэтому для изучения инструментов пригодится знание иностранного языка.

Не важно, понимаете ли вы программы подобного рода, вам всё равно придётся потратить время, чтобы разобраться в Mach3. Знание английского языка не поможет быстрее изучить этот софт с узкой специализацией.

Полноценная работа программы будет доступно только после тщательного изучения функций. Для запуска софта желательно выключить фоновые программы, оптимизировав компьютер для работы.

Программу Mach3 можно запускать только в режиме на «весь экран». В софте удобный интерфейс, который позволяет переставлять панели с различными опциями. Воспользуйтесь Mach и сгенерируйте макросы, а также M-коды из скриптов VB.

Программа может проводить «регулировку», используя несколько уровней. При необходимости вы настроите частоту, с которой будет вращаться шпиндель. В софте можно создавать инструмент, который управляет G-кодами.

Эта программа может импортировать файлы в формате JPG, DFX и BMP. При потребности вы можете активировать окно, которое «выводит» картинку с камеры видеонаблюдения.

Итоги

  • в программе нет русской локализации;
  • инструменты софта - сложные, не рассчитанные на начинающих пользователей;
  • гибкая оболочка для пользователя;
  • вы можете просматривать рабочий процесс, используя видеокамеру;
  • программа работает в полноэкранном режиме;
  • установка доступна только на OS Windows c XP до 7.

Многие пользователи Mach 3 путаются в настройках режима постоянной скорости и в том, как они влияют на перемещения станка.

Общая логическая конфигурация (Config -> General Config...)

- Режим перемещения (постоянная скорость или точный останов)

Постоянная скорость (Constant Velocity, ПС) - режим, обеспечивающий поддержание постоянной скорости во время ВСЕХ угловых или дуговых перемещений, подчиняясь параметру ускорения. Однако это невозможно во время некоторых перемещений, таких как перемещения по одной оси переменного направления (то есть, при таких перемещениях движение должно в какой-то момент останавливаться). При перемещениях, где может поддерживаться постоянная скорость, углы будут скругляться в зависимости от того, насколько велико ускорение в сочетании с допуском расстояний в режиме постоянной скорости (см. ниже). Более высокие ускорения и меньшие значения допуска расстояний приведут к более крутым углам и снижению динамической погрешности. Обратите внимание, что это НЕ то же самое, что и динамическая погрешность серводвигателя подачи и не имеет ничего общего с ПИД-регулированием. Динамическая погрешность серводвигателя / шагового двигателя будет несколько ХУЖЕ, чем погрешность в режиме постоянной скорости, и зависит от того, насколько жесткой является обратная связь серводвигателя. Шаговые двигатели также будут отставать (+/-1 полный шаг) и терять шаги при слишком больших углах поворота (ЭТО ОЧЕНЬ ПЛОХО).

Точный останов (Exact Stop) - в этом режиме движение ускоряется и замедляется между «точками» в . Mach-3 видит только одно перемещение за раз, поэтому станки в этом режиме работают несколько грубо и очень медленно. Режим «точный останов» должен использоваться только в том случае, если станок не должен скруглять ни один угол (внутренний или внешний). Однако помните, что большинство CAM-программ для формирования дуг будут выдавать множество крошечных перемещений по коду G01. В режиме точного останова данный тип движения характеризуется низким качеством обработки поверхности и может негативно сказываться на режущем инструменте и компонентах станка.

- Общая конфигурация (LookaHead____ Lines) (буфер предпросмотра)

Применяется только в режиме постоянной скорости и определяет, как далеко «по ходу» заглядывает вперед планировщик перемещений Mach3. Установка малого значения данного параметра - это как вождение автомобиля при близорукости. Установка большого значения напоминает стопроцентное зрение, дополняемое использованием бинокля, когда необходимо смотреть вдаль. Данный параметр позволяет программе лучше адаптироваться к внезапным изменениям траектории движения. Для большинства случаев рекомендуется установить значение данного параметра примерно на 200. Максимальное значение составляет 1000, однако установка максимума может вызвать проблемы при недостаточном быстродействии компьютера.

- Режим постоянной скорости (режим «плазма»- Plasma Mode, ПС допуск расстояний - CV Dist Tolerance____ Units, G100 адаптивно значению ПС - G100 Adaptive NurbsCV, Стоп ПС, если угол > ...градусов - Stop CV on angles > _____ Degrees)

Режим «плазма» (Plasma Mode) позволяет в некоторых случаях избежать «нырков» и скруглений углов. Как правило, этот параметр не рекомендуется использовать, помимо случая, когда ваш станок имеет невысокое ускорение и низкое разрешение шага.

ПС допуск расстояний (CV Dist Tolerance____ Units) - данный параметр влияет на величину скругления углов. Установка большого значения позволит станку работать максимально быстро. Установка малого значения обеспечит меньшее скругление углов, поскольку станок будет приближаться к заданной геометрии, однако при этом скорость обработки несколько снизится. Физически данный параметр означает расстояние от конца линии, по которой производится рез, до того места, где дуга начинает скругляться. Таким образом, это расстояние от пересечения дуги в режиме ПС до фактического конца перемещения (в режиме точного останова).

G100 адаптивно значению ПС (G100 Adaptive NurbsCV) - это устаревшая опция и ее не следует использовать. Она осталась с тех времен, когда G100 выполнял DDA, но теперь безнадежно устарела.

Стоп ПС, если угол > ...градусов (Stop CV on angles > _____ Degrees) - действительно полезная настройка, которая автоматически переключает станок из режима постоянной скорости в режим точного останова в зависимости от приближающегося угла следующей строки кода. Неплохим компромиссным решением является установка данного параметра на 90 градусов, поскольку большая часть G-кода, в котором имеется поворот на 90 градусов (или меньше), обычно указывает на то, где требуется хороший острый угол. Тем не менее, некоторое CAM-программы могут генерировать ДЕЙСТВИТЕЛЬНО плохой код, который физически представляет собой дугу или угловое перемещение как гигантскую последовательность маленьких ступеней лестницы, расположенных под углом 90 градусов, например:

G01
X0
Y0
X0.01
Y0.01
X0.02
Y0.02

Этот код будет УЖАСНО запускаться с настройкой на 90 градусов или выше. Иногда, просто глядя на экран, ОЧЕНЬ сложно сказать, есть ли в вашем коде такая проблема. Данный вопрос заставляет многих биться головой о стену, поэтому, если несмотря на все ваши старания, ваш станок перемещается по кривым, стоит просмотреть свой код. При этом, чтобы увидеть проблему, на Mach3 может потребоваться масштабирование траектории движения инструмента.

Настройка колеса Шаттл (Ускорение колеса___секунд)

Данный параметр определяет, сколько времени отводится на перемещение для устранения люфта (см. статью "Люфт ШВП и ходовых винтов"). В данном случае для сервоприводов были установлено ОЧЕНЬ маленькое значение (0,00001). Это нивелирует влияние люфта на плавность работы станка, поскольку шаговые импульсы отправляются максимально часто (в пределах скорости ядра). В системах c шаговыми двигателями может потребоваться большое значение, необходимое для предотвращения потери шагов. Также рекомендуется установить размер люфта до некоторого ОГРОМНОГО видимого числа (10 мм), поскольку в этом случае легко понять, как различные параметры люфта влияют на перемещения станка.

Значения люфта (Backlash Values (Config -> Backlash))

Размер люфта в единицах (Backlash Distance in units) - это величина отклонения / соответствия / компенсация / мертвого хода по конкретной оси. Ось станка без трения (линейные направляющие и т. д.), может скользить вперед и назад на величину люфта, как ей будет угодно (во время ускорения, глубокого реза, при вибрации). Так что желательно максимально сократить рабочий ход, прежде чем применять компенсацию люфта в программе. Для станков с высоким коэффициентом трения (прямоугольные направляющие / направляющие типа «ласточкин хвост») или медленных станков это не такая уж большая проблема.

Скорость люфта % от макс. (Backlash Speed % of Max) - данный параметр необходим, поскольку компенсация люфта не ограничена параметром ускорения. Установка параметра на 100% в системе с шаговыми двигателями это приведет к потерям шагов, а для серводвигателей 100% - это просто отлично:)

Главный экран (Настройки Alt6) (Main Screen (Settings Alt6))

ПС допуск расстояний (CV Distance) - см. выше

ПС подача (CV Feedrate) - перемещение, как в режиме постоянной скорости, НО с заданной вами скоростью подачи. Например, если ПС подача установлена на 50 UPM, а значение перемещения - на 20, то скорость по следующей оси ускорится до 20, тогда как первая ось замедлится до 20. В результате, перемещение в режиме постоянной скорости будет выглядеть так же, как перемещение при 20 UPM. Проблема лишь в том, что на высокой скорости будет наблюдаться огромное количество рывков в системе.

Очевидно, что настройки режима постоянной скорости оказывают значительное влияние на производительность станка. При первом запуске лучше включить режим постоянной скорости и отключить все остальные настройки до тех пор, пока вы не прочувствуете работу системы. Сервосистемы весьма снисходительны в отношении настроек постоянной скорости и не теряют позиционирование несмотря ни на что. Шаговые двигатели, наоборот, могут моментально начать терять шаги, если настройка не совсем верна. Рекомендация при работе с шаговыми двигателями: вносите изменения максимально осторожно и не забывайте, что превышение допустимых возможностей может привести к потере шагов и самообладания!

Mach3 - это пакет программного обеспечения, который работает на ПК и превращает его в экономичную станцию управления станком. Для работы Mach3 вам нужно иметь ПК, на котором установлена операционная система Windows 2000, Windows XP или Windows 7 32bit. Разработчики программы рекомендует использовать компьютер с процессором от 1ГГц и оперативной памятью не менее 1ГГб. Стационарный компьютер дает лучшие результаты, по сравнению с ноутбуками и значительно дешевле. Кроме того, вы можете использовать этот компьютер и для других работ, когда он не занят управлением вашим станком. При установке на ноутбук рекомендуется провести .

Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату – USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.

1. После установки программы Mach3 проверяем работу драйвера.

После установки программы запускаем файл DriverTest.exe, при корректной работе драйвера наблюдаем картинку, рисунок 1.

Рисунок 1 Проверка работы драйвера программы Mach3.

Если нет, следует проверить следующее:

1) операционная система Windows 32bit

2) Совпадает ли номер LPT порта и его адрес с настройками в Mach3, по умолчанию LPT1 и адрес порта(0x378) , то есть картинка из меню пуск->панель управления -> система -> оборудование -> диспетчер устройств -> порты COM и LPT должна быть как на рисунке 2.

Рисунок 2. Просмотр настроек LPT порта

Mach3 поддерживает работу только с портами LPT1 или LPT2, если при установке внешней платы номер порта LPT3, то его нужно изменить в диспетчере устройств на LPT1.

Адрес порта можно посмотреть в свойствах(правая кнопка мыши на выделенной надписи), вкладка - ресурсы.

Если используется переходник USB-LPT, скачать драйвер для переходника USB по ссылке https://cloud.mail.ru/public/6kXS/3CddBpHpG

На этом настройка закончена.

При желании можно поэкспериментировать с установкой разных скоростей и ускорений, выбирая те, которые вас больше устраивают и при которых двигатели вращаются устойчиво без пропуска шагов и подергиваний.

Максимальная скорость примерно равна 500-600 мм/мин на каждый миллиметр шага винта. Т.е. если ваш винт имеет шаг 1,5 мм, вы можете достичь скорости примерно 1000 мм/мин, для ШВП с шагом 5мм это значение уже 3000мм/мин, а для ШВП1610 аж 6000мм/мин!

Добившись максимально возможной скорости, имейте ввиду, что для реальной устойчивой работы эти значения желательно снизить на 20-40%.

Можно также поэкспериментировать со скоростью спада тока в обмотках, но это лучше делать на готовом станке.

В дальнейшем для работы используйте инструкцию программы MACH3..

Mach3 - это пакет программного обеспечения, который работает на ПК и превращает его в экономичную станцию управления станком. Для работы Mach3 вам нужно иметь ПК, на котором установлена операционная система Windows 2000, Windows XP или 32-битная Windows Vista. (Для работы в операционной системе Windows Vista может понадобиться патч реестра, который можно скачать на сайте www.machsupport.com .) ArtSoft USA рекомендует использовать процессор с частотой не менее 1GHz и монитор с разрешением 1024 x 768 пикс. Стационарный компьютер дает лучшие результаты, по сравнению с лэптопами и значительно дешевле. Кроме того, вы можете использовать этот компьютер и для других работ, когда он не занят управлением вашим станком. При установке на ноутбук рекомендуется провести оптимизацию системы под Mach3 .

Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через один (иногда через два) параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату – USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.

Mach3 генерирует импульсы шага и сигналы направления, выполняя последовательно команды G-кодовой управляющей программы (УП), и посылает их на порт(ы) компьютера или внешний контроллер. Платы электропривода двигателей осей вашего станка должны принимать сигналы шага и сигналы направления (step и dir), выдаваемые программой Mach3. Так обычно работают все шаговые двигатели и современные сервосистемы постоянного и переменного тока, оснащенные цифровыми энкодерами (датчиками положения).

Чтобы настроить систему с ЧПУ на использование Mach3, вам необходимо установить ПО Mach3 на ваш компьютер и правильно подключить электроприводы ваших двигателей к порту компьютера.

Mach3 очень гибкая программа, созданная для управления такими машинами, как фрезерные станки, токарные станки, плазменные резаки и трассировщики. Характеристики станков, управляемых Mach3, следующие:

· Частичное ручное управление. Кнопка Аварийного останова (EStop ) обязательно должна присутствовать на любом станке.

· Две или три оси, расположенные под прямым углом друг к другу (обозначаемые как X, Y, и Z)

· Инструмент, движущийся относительно заготовки. Начальные положения осей фиксируются относительно заготовки. Относительность движения заключается в том, что (1) движется инструмент (например, фреза, зажатая в шпинделе, перемещается по оси Z или токарный инструмент, закрепленный в зажиме, совершает движение в направлении осей X и Z) или (2) перемещается стол и закрепленная на нем заготовка (например, на консольно-фрезерном станке происходит перемещение стола по направлениям осей X, Y и Z, когда инструмент и шпиндель неподвижны).

И дополнительно:

· Выключатели, сообщающие, когда инструмент находится в положении «База».

· Выключатели, определяющие ограничения разрешенного относительного движения инструмента.

· Управляемый «шпиндель». Шпиндель может вращать инструмент (фрезу) или заготовку (точение).

· До трех дополнительных осей. Они могут быть определены как ротационные (т.е. их движение измеряется в градусах) или линейные. Каждая из дополнительных линейных осей может быть подчинена оси X, Y, или Z. Они будут перемещаться вместе, управляемые УП или вашими ручными переездами, но обращение к ним осуществляется по отдельности (для получения детального описания см. параграф 5.6.4).

· Выключатель или выключатели, соединенные в защитную цепь станка.

· Управление способом подачи охлаждения (жидкостного и/или газообразного)

· Зонд - щуп в держателе инструмента, позволяющий производить оцифровку существующих деталей или моделей.

· Энкодеры, датчики положения со стеклянной шкалой, которые могут показывать положение узлов станка

· Специальные функции.

В большинстве случаев, станок подключается к компьютеру, на котором установлен Mach3, через параллельный (принтерный) порт(ы) компьютера. Простой станок использует один порт, комплексному – иногда требуется два. Управление специальными функциями, такими как LCD дисплей, смена инструмента, фиксирование осей или конвейер для отвода стружки, происходит посредством подключения специального устройства ModBus (например, PLC или Homan Design ModIO контроллер). Также соединение может происходить через "эмулятор клавиатуры", который генерирует псевдо нажатия клавиш в ответ на сигналы ввода. Mach3 управляет сразу шестью осями, координируя их одновременное движение с помощью линейной интерполяции, или осуществляя круговую интерполяцию по двум осям (из X, Y и Z), в то же время линейно интерполируя оставшиеся четыре с помощью угла, охваченного круговой интерполяцией. Таким образом, при необходимости инструмент может перемещаться по сужающейся винтовой траектории. Подача на протяжении этих передвижений поддерживается в соответствии со значением, указанным в вашей управляющей программе (УП), согласно ограничениям ускорения и максимальной скорости осей. Вы можете вручную передвигаться по осям, используя различные способы ручных Переездов. Если механизм вашего станка представляет собой руку робота или гексапод, то Mach3 не сможет им управлять, потому что в этом случае потребуются кинематические вычисления, чтобы соотнести положение «инструмента» в точках X,Y и Z с длиной и вращением «руки» станка. Mach3 может запускать шпиндель, вращать его в любом направлении и выключать его. Также возможно управление скоростью вращения (в об/мин) и наблюдение за углом его наклона для выполнения таких задач, как нарезание резьбы. Mach3 может включать и выключать два типа подачи охлаждения. Mach3 наблюдает за аварийными выключателями Estop и контролирует использование выключателей Баз, защитного оборудования и концевых выключателей. Mach3 сохраняет базу данных параметров до 256 единиц различного инструмента. Однако, если в вашем станке предусмотрена автоматическая смена инструмента или магазина, вам придется управлять ею самостоятельно. В Mach3 имеется возможность задания макросов, но для работы с этой
функцией пользователю нужно знать программирование.

Варианты приводов движения по осям
Шаговые и серво двигатели
Есть два возможных типа движущей силы для приводов осей
1 Шаговый двигатель
2 Серводвигатель (пост. или перем. тока)
Каждый из них может передвигать оси движение посредством ходовых винтов (прямых или шарико-винтовых), ремней, цепей, шестерен или червячной передачи. Способ передачи движения определяет скорость и крутящий момент получаемый от двигателя, зависящие от передаточного отношения редуктора, характеристик механического привода. Свойства биполярного шагового двигателя:

· Низкая стоимость

· Простое 4-х проводное подключение к двигателю

· Почти не требует ухода

· Скорость двигателя ограничена примерно 1000 оборотами в минуту, а вращающий момент ограничен, примерно, 3000 унциями на дюйм (21 Nm). Максимальная скорость определяется при работе двигателя или электроники привода на их максимально допустимом напряжении. Максимальный вращающий момент определяется при работе двигателя на его максимально допустимой силе тока (в амперах).

· Для производственных нужд шаговики станка должны управляться микрошаговым контроллером с дроблением шага, обеспечивающим плавность действий на любой скорости с соответствующей эффективностью.

· Шаговики обычно обеспечивают только управление открытыми циклами. Это означает, что существует возможность потери шагов при большой нагрузке, и это не сразу станет заметно для пользователя станка. На практике, шаговые двигатели обеспечивают вполне достаточную производительность на стандартных станках

С другой стороны, серводвигатель это:

· Относительно высокая цена (особенно для двигателей пост. тока)

· Требуются кабели и для двигателя и для энкодера

· Требуется уход за щетками (на двигателях переменного тока)

· Скорость двигателя может достигать 4000 оборотов в минуту, а вращающий момент практически не ограничен (насколько позволит ваш бюджет!)

· Используется управление закрытыми циклами, так что положение привода всегда должно быть правильным (иначе будет подан сигнал о сбое)

Фрезерный станок с поперечной кареткой
Начнем с проверки минимально возможного расстояния движения. Это будет абсолютный предел по точности выполняемой на станке работы. После мы проверим ускоренные переезды и крутящий момент. Предположим, например, что вы создали фрезерный станок с поперечной кареткой (ось Y), и ход поперечной каретки составляет 12 дюймов. Вы собираетесь использовать винт с резьбой в одну нить, с шагом в 0.1 дюйм и шариковой гайкой. Ваша цель, достичь минимального движения в 0.0001
дюйма. Один полный оборот винта с шагом в 0.1 дюйма дает движение на 0.1 дюйма, так что перемещение на 0.0001 дюйма – это 1/1000 часть от этого. Это 1/1000 оборота вала двигателя, если он напрямую соединен с винтом. Использование шагового двигателя. Минимальный шаг шагового двигателя зависит от того, каким образом он управляется. Обычно распространенные шаговые двигатели имеют 200 полных шагов на оборот, но контроллеры также обеспечивают и микро-шаговые режимы. Микрошаговые режимы помогают добиваться гладкого передвижения на высшем значении скорости подачи, и многие контроллеры позволяют производить 10 микрошагов на один полный шаг. 200-шаговый двигатель с 10 микрошагами на один полный шаг
обеспечивает 1/2000 оборота, как минимальный шаг. Как показано в примере выше, два микро-шага дадут желаемое минимальное перемещение на 0.0001 дюйма. Это, однако, должно рассматриваться с некоторыми оговорками. Тогда как число микрошагов на один шаг растет, крутящий момент быстро падает. В зависимости от нагрузки, ложащейся на двигатель, может не быть достаточного крутящего момента для действительного движения мотора на один микрошаг. Бывает необходимо сделать
несколько микрошагов прежде чем появится достаточный крутящий момент. В общем, для получения точных результатов используйте не микрошаговый режим. Основные преимущества микрошагового режима – уменьшение механических помех, сглаживание запуска и снижение резонансных проблем. Теперь обратим внимание на возможную скорость ускоренных переездов. Предположим, по минимуму, что максимальная скорость двигателя – 500 оборотов в минуту. В нашем примере с
ходовым винтом с шагом 0.1 дюйма, 500 оборотов в минуту дадут скорость ускоренных переездов 50 дюймов в минуту, или около 15 секунд для преодоления 12 дюймов длины направляющих. Этот результат является удовлетворительным, но не впечатляющим. На такой скорости электронике микрошагового привода двигателя требуется 16,667 (500 об./мин. * 200 шагов на оборот * 10 микрошагов на шаг / 60 секунд в минуте) импульсов в секунду. На компьютере с частотой 1 ГГц, Mach3 может генерировать одновременно по 35,000 импульсов в секунду для каждой из 6 возможных осей. Так что, с такой задачей она справится без проблем. Теперь следует определить требуемый для станка крутящий момент, который задаст параметры требующегося двигателя. Одним из способов измерить его, является установка станка на тяжелейший рез, который, как вы считаете, вам когда-нибудь придется сделать, применив наибольший затяг (скажем 12”) на ручном колесике, применяемом на направляющих, закрутив до отказа балансировочную пружину (или приспособив под эти цели пружину от кухонных весов). Крутящий момент для этого реза (в унциях-дюймах) – считанный баланс (в унциях) x 12. Другой способ, это использовать информацию о калибре и параметрах двигателя, который, как вы знаете, стоит на таком же станке с такими же направляющими и винтом. Поскольку шаговый двигатель может «терять шаги» с набеганием погрешности, лучше используйте двигатель большего калибра с запасом в крутящем моменте. Также вы можете увеличить крутящий момент с помощью редуктора. Если вычисленная скорость ускоренных переездов находится в разумных пределах, вы можете рассмотреть вариант снижения передаточного отношения до 2:1 (применив, скажем, зубчатую ременную передачу), что должно удвоить крутящий момент на винте. Это позволит использовать двигатель меньшего калибра (а, следовательно, и дешевле).

Привод портального трассировщика
Для портального трассировщика может потребоваться движение, по меньшей мере, на расстояние 60 дюймов по оси портала. Винт шарико-винтовой пары для такой длины - это слишком дорогое и сложное решение, так как, кроме прочего, его тяжело защитить от пыли. Многие разработчики приходят к использованию передач посредством цепей или зубчатых колес. Выберем минимальный шаг в 0.0005 дюйма. Ведущая шестерня с 20-ю зубцами и шагом ј дюйма дает порталу перемещение 5 дюймов на оборот шестерни. Шаговый двигатель (десять микрошагов) дает 2000 шагов на оборот, так что между двигателем и валом шестерни требуется редукция 5:1 (используя ремень или редуктор) и при передаточном отношении 5:1 один
оборот шагового двигателя даст в результате перемещение на 1 дюйм. С такой конструкцией, если мы получим 500 оборотов в минуту от шаговика, перемещение будет 500 дюймов в минуту или 8.33 дюйма в секунду. Ускоренный переезд на 60 дюймов, не принимая во внимание ускорение и замедление, займет 7.2 секунды . Вычисление крутящего момента на этом станке сложнее, чем на фрезере с поперечной кареткой, учитывая массу передвигаемого портала, инерцию, длительность ускорения и замедления, что, наверное, важнее, чем сила реза. Чужой опыт или самостоятельные эксперименты будут для многих лучшим решением.

Концевые выключатели (Limit) и выключатели Баз (Home switches)
Концевые выключатели (Limit) используются для того, чтобы не давать осям двигаться слишком далеко и тем самым избежать возможного повреждения станка. Вы можете использовать станок и без них, но небольшая ошибка в расчетах может повлечь за собой множество повреждений, устранение которых обойдется довольно дорого

Статьи по подготовке файлов резки для фрезерного станка в программе ArtCam.

Mach3 - это пакет программного обеспечения, который работает на ПК и превращает его в экономичную станцию управления станком. Для работы Mach3 вам нужно иметь ПК, на котором установлена операционная система Windows 2000, Windows XP или Windows 7 32bit. Разработчики программы рекомендует использовать компьютер с процессором от 1ГГц и оперативной памятью не менее 1ГГб. Стационарный компьютер дает лучшие результаты, по сравнению с ноутбуками и значительно дешевле. Кроме того, вы можете использовать этот компьютер и для других работ, когда он не занят управлением вашим станком. При установке на ноутбук рекомендуется провести .

Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату - USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.

1. После установки программы Mach3 проверяем работу драйвера.

После установки программы запускаем файл DriverTest.exe, при корректной работе драйвера наблюдаем картинку, рисунок 1.

Рисунок 2. Просмотр настроек LPT порта

Mach3 поддерживает работу только с портами LPT1 или LPT2, если при установке внешней платы номер порта LPT3, то его нужно изменить в диспетчере устройств на LPT1.

Адрес порта можно посмотреть в свойствах(правая кнопка мыши на выделенной надписи), вкладка - ресурсы.

Например если адрес порта CE00, то в Мach3 необходимо изменить 0х378(рисунок 4) на 0хCE00.

А также скопировать файл mach3usb.dll(Вы не можете скачивать файлы с нашего сервера ) в папку c:\mach3\plugins.

Контроллеры ТB6560HQT предназначены для управления биполярными шаговыми двигателями с максимальным током обмотки до 3,5 А. В эту категорию попадает абсолютное большинство двигателей с типоразмером до NEMA23, т.е. имеющих размер по боковой стороне до 2,3 дюйма или 57см.


Рисунок 3 Контроллер управления станком с ЧПУ в закрытом алюминиевом корпусе(на фото со снятой крышкой, для работы в режиме 1/2 шага переключатель 5 в положении ON, переключатель 6 в положении OFF, в контроллерах из комплекта станка переключатели уже выставлены, изменения не требуются)

Переключение режимов обеспечивается выбором положений DIP-переключателей М1 и М2 для каждого из каналов контроллера(в контроллерах из комплекта станка переключатели уже выставлены, изменения не требуются!).

Напряжение питания двигателей и контроллера - от 12 вольт до 36 вольт.

Контроллер и все двигатели питаются от одного источника.

Контроллер имеет встроенную систему стабилизации тока в обмотке, величина тока не зависит от модели применяемого шагового двигателя и определяется: максимальный ток обмоток - величиной измерительных резисторов, установленных в контроллере, текущий - положением DIP-переключателей S1-S4 в каждом из каналов контроллера.

Для улучшения работы контроллера и повышения скоростных качеств предусмотрена возможность установки скорости спада тока в обмотке, это обеспечивается изменением положений DIP-переключателей S7-S8 для каждого канала контроллера.

УСТАНОВКА

ТОКА

УСТАНОВКА СКОРОСТИ

СПАДА ТОКА

S8

РЕЖИМ ДРОБЛЕНИЯ

ШАГА

S5

S6

50%->20% ON OFF

Медленный

OFF OFF

Контроллеры приобретенные в комплекте со станком уже настроены и не требуется изменение положения конфигурационных перемычек. Если контроллер приобретен отдельно, то перед первым включением устанавливаем ток 25%(после всех проверок ток можно будет поднять, подробнее в пункте 4), скорость спада оставляем без изменений, режим дробления шага - 1/2 полушаг.

2. Установка порта.

В меню "config"(«Конфигурации») выбираем "Port and Pins" (Порты и Пины) ставим галку на нужный порт, рисунок 4.

Рисунок 5. Настройка пинов управления шаговыми двигателями в программе Mach3.

Выбираем соседнюю вкладку "Input Signal" , делаем изменения как на картинке, рисунок 6.

Рисунок 7 Настройка выходных сигналов программы Mach3.

Примечание. Если после окончания настройки при нажатии кнопки Reset не произошло включение контроллера(включение контроллера слышно по шипению шаговых двигателей, и при управлении перемещением со стрелок клавиатуры, шаговые двигатели не вращаются, то необходимо инвертировать сигнал управления включением контроллера, сделать это можно щелкнув мышкой в поле Active Low (рисунок 7) для изменения галочки на крестик, и нажать кнопку "применить").

Для станков cnc-2535al, пин управляющий включением контроллера номер 14, рисунок 8


Рисунок 8 Настройка выходных сигналов программы Mach3.

5 Установка скоростей холостых перемещений и передаточных чисел.

В меню "config"(«Конфигурации»)выбираем пункт «Motor Tuning» (Настройка двигателей)

Передаточные числа, скорости и ускорения устанавливаются раздельно для каждой оси, поэтому выбираем нужную ось, например «ось X» (Axis X) и вводим данные для нее, затем сохраняем данные и переходим к следующей оси.

Передаточное число (для установленного ходового винта ЧПУ станка)

В окошке «Шагов на мм» (Step per mm) данные вводятся в соответствии с таблицей для винтовых передач, соединенных напрямую с двигателем, имеющим угол одного шага 1,8 градуса.

Шаг винта мм

Полный шаг

1/2 шага

1/8 шага

1/16 шага

1,5 (M10) 133,33333 266,66666 1066,66666
1,75 (M12) 114,28571 228,57142 914,28571
2,0 (TR10) 100 200 800
3,0 (TR12) 66,66666 133,33333 533,33333
4,0(TR14) 50 100 200
5,0 (ШВП1605) 40 80 320
10,0 (ШВП1610) 20 40 160

Вводим данные передаточного числа в программу(шагов на ММ / Steps per) .

Внимание! разделитель дробной части точка не запятая.

Устанавливаем для оси Х(аналогично для Y) количество шагов на мм

Для Моделист2030 c винтом М12 Steps per равным "228.57142"

Для алюминиевого станка cnc-2020al (200мм х 200мм) c винтом TR10 Steps per равным "200"

Для алюминиевого станка cnc-2535al (250мм х 350мм) c винтом TR14 Steps per равным "100"

Для Моделист3030 c винтом TR12 Steps per равным "133.333333"

Для Моделист3040, Моделист4060, Моделист4080 и алюминиевых станков (cnc-1522al2, cnc-2535al2, cnc-3040al, cnc-3040al2, cnc-6090al) c ШВП1605 Steps per равным "80".

Для Моделист4090, Моделист6090, Моделист60120 и алюминиевых станков Моделист (Моделист60120al, Моделист90120al, Моделист120120al) c ШВП1610 по Y, Steps per для оси Y равным "40", для остальных осей "80".

Cкорость перемещений Velocity ставим не более 3000 для станков с ШВП1605, не более 1000 для моделист2020 и 2030, ускорение Acceleration устанавливаем равным "50", длительность импульса шага Step Pulse и Dir Pulse устанавливаем равным "15", то есть как на картинке, рисунок 9.


Рисунок 9. Настройка передаточного числа, скорости холостых перемещений и ускорений.

затем нажимаем кнопку SAVE AXIS SETTING для сохранения

Переходим на вкладку Y Axis, устанавливаем всё аналогично оси Х. Cохраняем.

Переходим на вкладку Z Axis. Устанавливаем для оси Z:

Для Моделист2030 c винтом оси Z М12 Steps per равным "228,57142"

Для Моделист3030 и станка из алюминия cnc-2020al (200мм х 200мм) c винтом оси Z TR10 Steps per равным "200"

Для станка из алюминия cnc-2535al (250мм х 350мм) c винтом оси Z TR14 Steps per равным "100"

Для алюминиевых станков c винтом оси Z ШВП1605 Steps per равным "80"

Для Моделист3040-4060-4090 c винтом оси Z TR12 Steps per равным "133.333333".

Cкорость перемещений Velocity ставим аналогично описанному в разделе оси Х.

Автоматическое вычисление значений "steps per"(шагов на мм), то есть калибровка осей.


Рисунок 10. Автоматическая калибровка

Перемещаем калибруемую ось в начальную точку.
1 - Переходим в режим настроек, на рисунке 10 действие обозначено цифрой 1.
2 - Запускаем калибровку осей, на рисунке 10 действие обозначено цифрой 2.
3 - Выбираем калибруемую ось, на рисунке 10 действие обозначено цифрой 3.
4 - Нажимаем "ОК".
5 - Вводим расстояние для калибровки, например 100мм.
6 - Нажимаем "ОК". Станок переместит инструмент на указанное в пункте 5 расстояние.
7 - Измеряем реальное перемещение и вводим это значение.
8 - Нажимаем "ОК". Программа МАЧ3 вычислит калибровочное значение.
9 - Соглашаемся с программой и сохраняем новое калибровочное значение.
10 - Выходим из режима калибровки.
11 - После завершения всех калибровок возвращаемся в главное меню программы.
Данную операцию желательно повторить дважды - первый раз на расстояние 10мм, а второй раз на 90% от рабочей области калибруемой оси.

6. Настройка ведомой оси(только для 4х моторных станков Моделист3030М и Моделист60100 и Моделист90120)

Для 4х моторных станков с двумя ведущими моторами по одной оси, необходимо произвести настройки для четвертого ведомого мотора. Для этого в меню Config -> Slave Axis(рисунок 11) в настройках "Slave Axis Selection" в разделе "Y Axis Slaved Axis" выделяем "A Axis"(рисунок 12)

Рисунок 13. Порядок старта

В этот момент двигатели должны зафиксировать свое положение и слегка зашуметь., если этого не произошло проверьте пункт 1.

Если контроллер уже настроенный из комплекта станка переходим к пункту 8.

Если необходимо настроить ток контроллера, то выждав 15-20 минут, определяем нагрев двигателей и радиатора контроллера и если их температура не повысилась, можно установить положение DIP-переключателей Т1-Т2 в положение соответствующее номинальному току для этих двигателей. Если вам неизвестен номинальный ток, установите положение DIP-переключателей в положение 50% тока и выждав еще 15 - 20 минут, снова проверьте нагрев. Если нагрева нет, можно повышать ток до 75% или до 100% . Оптимальным считается ток, когда двигатели после получасовой работы не нагреваются до температуры выше 50-60 градусов. Радиатор контроллера должен нагреваться не выше 40 градусов при длительной работе.

8 Проверка работы

Переходим на вкладку MDI Alt2(можно нажатием клавиш "alt"+"2") , нажимаем кнопку RESET, желтые квадратики слева от кнопки должны погаснуть, а мигающая полоска над кнопкой стать зеленого цвета. Теперь нажимая на клавиатуре стрелки (влево вправо вверх вниз) наблюдаем на станке перемещения по осям а на экране изменение координат в полях X Y слева вверху, для перемещения по оси Z кнопки PageUP, PageDown. Для проверки корректности настроек, необходимо положить на стол линейку и, управляя перемещением с клавиатуры стрелками, проконтролировать совпадение пройденного расстояния по линейке с показаниями в окошках MACH3. Если расстояние в 10 раз меньше, то проверьте установленную систему единиц, на экране Settings внизу справа - mm/inch должно быть выбрано inch . Или Config - Select Native Units и выбрать inch .

Если направление движения не верное, изменить его можно меню config->port and pins->motor outputs изменить значение Dir Low Active в нужном канале, рисунок 14.

Рисунок 15. Проверка работы

Переходим на вкладку ToolPatch, загружаем подготовленный G-код (выбрав File -> Load G-code) наблюдаем размеры детали и положение на столе как на картинке, Рисунок 16.

Рисунок 17

На этом настройка закончена.

При желании можно поэкспериментировать с установкой разных скоростей и ускорений, выбирая те, которые вас больше устраивают и при которых двигатели вращаются устойчиво без пропуска шагов и подергиваний.

Максимальная скорость примерно равна 500-600 мм/мин на каждый миллиметр шага винта. Т.е. если ваш винт имеет шаг 1,5 мм, вы можете достичь скорости примерно 1000 мм/мин, для ШВП с шагом 5мм это значение уже 3000мм/мин, а для ШВП1610 аж 6000мм/мин!

Добившись максимально возможной скорости, имейте ввиду, что для реальной устойчивой работы эти значения желательно снизить на 20-40%.

Можно также поэкспериментировать со скоростью спада тока в обмотках, но это лучше делать на готовом станке.

В дальнейшем для работы используйте инструкцию программы MACH3..

Mach3 - это пакет программного обеспечения, который работает на ПК и превращает его в экономичную станцию управления станком. Для работы Mach3 вам нужно иметь ПК, на котором установлена операционная система Windows 2000, Windows XP или 32-битная Windows Vista. (Для работы в операционной системе Windows Vista может понадобиться патч реестра, который можно скачать на сайте www.machsupport.com .) ArtSoft USA рекомендует использовать процессор с частотой не менее 1GHz и монитор с разрешением 1024 x 768 пикс. Стационарный компьютер дает лучшие результаты, по сравнению с лэптопами и значительно дешевле. Кроме того, вы можете использовать этот компьютер и для других работ, когда он не занят управлением вашим станком. При установке на ноутбук рекомендуется провести оптимизацию системы под Mach3 .

Mach3 и его драйвер параллельного порта соединяется с оборудованием станка через один (иногда через два) параллельный порт (порт принтера). Если ваш компьютер не оборудован параллельным портом (всё больше и больше компьютеров выпускается без этого порта), вы можете приобрести специальную плату - USB-LPT, которая подключается к компьютеру через USB порт, или приобрести плату расширителя портов PCI-LPT или PCI-E-LPT.

Mach3 генерирует импульсы шага и сигналы направления, выполняя последовательно команды G-кодовой управляющей программы (УП), и посылает их на порт(ы) компьютера или внешний контроллер. Платы электропривода двигателей осей вашего станка должны принимать сигналы шага и сигналы направления (step и dir), выдаваемые программой Mach3. Так обычно работают все шаговые двигатели и современные сервосистемы постоянного и переменного тока, оснащенные цифровыми энкодерами (датчиками положения).
Чтобы настроить систему с ЧПУ на использование Mach3, вам необходимо установить ПО Mach3 на ваш компьютер и правильно подключить электроприводы ваших двигателей к порту компьютера.
Mach3 очень гибкая программа, созданная для управления такими машинами, как фрезерные станки, токарные станки, плазменные резаки и трассировщики. Характеристики станков, управляемых Mach3, следующие:

· Частичное ручное управление. Кнопка Аварийного останова (EStop ) обязательно должна присутствовать на любом станке.

· Две или три оси, расположенные под прямым углом друг к другу (обозначаемые как X, Y, и Z)

· Инструмент, движущийся относительно заготовки. Начальные положения осей фиксируются относительно заготовки. Относительность движения заключается в том, что (1) движется инструмент (например, фреза, зажатая в шпинделе, перемещается по оси Z или токарный инструмент, закрепленный в зажиме, совершает движение в направлении осей X и Z) или (2) перемещается стол и закрепленная на нем заготовка (например, на консольно-фрезерном станке происходит перемещение стола по направлениям осей X, Y и Z, когда инструмент и шпиндель неподвижны).

И дополнительно:

· Выключатели, сообщающие, когда инструмент находится в положении «База».

· Выключатели, определяющие ограничения разрешенного относительного движения инструмента.

· Управляемый «шпиндель». Шпиндель может вращать инструмент (фрезу) или заготовку (точение).

· До трех дополнительных осей. Они могут быть определены как ротационные (т.е. их движение измеряется в градусах) или линейные. Каждая из дополнительных линейных осей может быть подчинена оси X, Y, или Z. Они будут перемещаться вместе, управляемые УП или вашими ручными переездами, но обращение к ним осуществляется по отдельности (для получения детального описания см. параграф 5.6.4).

· Выключатель или выключатели, соединенные в защитную цепь станка.

· Управление способом подачи охлаждения (жидкостного и/или газообразного)

· Зонд - щуп в держателе инструмента, позволяющий производить оцифровку существующих деталей или моделей.

· Энкодеры, датчики положения со стеклянной шкалой, которые могут показывать положение узлов станка

· Специальные функции.

В большинстве случаев, станок подключается к компьютеру, на котором установлен Mach3, через параллельный (принтерный) порт(ы) компьютера. Простой станок использует один порт, комплексному - иногда требуется два. Управление специальными функциями, такими как LCD дисплей, смена инструмента, фиксирование осей или конвейер для отвода стружки, происходит посредством подключения специального устройства ModBus (например, PLC или Homan Design ModIO контроллер). Также соединение может происходить через "эмулятор клавиатуры", который генерирует псевдо нажатия клавиш в ответ на сигналы ввода. Mach3 управляет сразу шестью осями, координируя их одновременное движение с помощью линейной интерполяции, или осуществляя круговую интерполяцию по двум осям (из X, Y и Z), в то же время линейно интерполируя оставшиеся четыре с помощью угла, охваченного круговой интерполяцией. Таким образом, при необходимости инструмент может перемещаться по сужающейся винтовой траектории. Подача на протяжении этих передвижений поддерживается в соответствии со значением, указанным в вашей управляющей программе (УП), согласно ограничениям ускорения и максимальной скорости осей. Вы можете вручную передвигаться по осям, используя различные способы ручных Переездов. Если механизм вашего станка представляет собой руку робота или гексапод, то Mach3 не сможет им управлять, потому что в этом случае потребуются кинематические вычисления, чтобы соотнести положение «инструмента» в точках X,Y и Z с длиной и вращением «руки» станка. Mach3 может запускать шпиндель, вращать его в любом направлении и выключать его. Также возможно управление скоростью вращения (в об/мин) и наблюдение за углом его наклона для выполнения таких задач, как нарезание резьбы. Mach3 может включать и выключать два типа подачи охлаждения. Mach3 наблюдает за аварийными выключателями Estop и контролирует использование выключателей Баз, защитного оборудования и концевых выключателей. Mach3 сохраняет базу данных параметров до 256 единиц различного инструмента. Однако, если в вашем станке предусмотрена автоматическая смена инструмента или магазина, вам придется управлять ею самостоятельно. В Mach3 имеется возможность задания макросов, но для работы с этой
функцией пользователю нужно знать программирование.

Варианты приводов движения по осям
Шаговые и серво двигатели
Есть два возможных типа движущей силы для приводов осей
1 Шаговый двигатель
2 Серводвигатель (пост. или перем. тока)
Каждый из них может передвигать оси движение посредством ходовых винтов (прямых или шарико-винтовых), ремней, цепей, шестерен или червячной передачи. Способ передачи движения определяет скорость и крутящий момент получаемый от двигателя, зависящие от передаточного отношения редуктора, характеристик механического привода. Свойства биполярного шагового двигателя:

· Низкая стоимость

· Простое 4-х проводное подключение к двигателю

· Почти не требует ухода

· Скорость двигателя ограничена примерно 1000 оборотами в минуту, а вращающий момент ограничен, примерно, 3000 унциями на дюйм (21 Nm). Максимальная скорость определяется при работе двигателя или электроники привода на их максимально допустимом напряжении. Максимальный вращающий момент определяется при работе двигателя на его максимально допустимой силе тока (в амперах).

· Для производственных нужд шаговики станка должны управляться микрошаговым контроллером с дроблением шага, обеспечивающим плавность действий на любой скорости с соответствующей эффективностью.

· Шаговики обычно обеспечивают только управление открытыми циклами. Это означает, что существует возможность потери шагов при большой нагрузке, и это не сразу станет заметно для пользователя станка. На практике, шаговые двигатели обеспечивают вполне достаточную производительность на стандартных станках

С другой стороны, серводвигатель это:

· Относительно высокая цена (особенно для двигателей пост. тока)

· Требуются кабели и для двигателя и для энкодера

· Требуется уход за щетками (на двигателях переменного тока)

· Скорость двигателя может достигать 4000 оборотов в минуту, а вращающий момент практически не ограничен (насколько позволит ваш бюджет!)

· Используется управление закрытыми циклами, так что положение привода всегда должно быть правильным (иначе будет подан сигнал о сбое)

Фрезерный станок с поперечной кареткой
Начнем с проверки минимально возможного расстояния движения. Это будет абсолютный предел по точности выполняемой на станке работы. После мы проверим ускоренные переезды и крутящий момент. Предположим, например, что вы создали фрезерный станок с поперечной кареткой (ось Y), и ход поперечной каретки составляет 12 дюймов. Вы собираетесь использовать винт с резьбой в одну нить, с шагом в 0.1 дюйм и шариковой гайкой. Ваша цель, достичь минимального движения в 0.0001
дюйма. Один полный оборот винта с шагом в 0.1 дюйма дает движение на 0.1 дюйма, так что перемещение на 0.0001 дюйма - это 1/1000 часть от этого. Это 1/1000 оборота вала двигателя, если он напрямую соединен с винтом. Использование шагового двигателя. Минимальный шаг шагового двигателя зависит от того, каким образом он управляется. Обычно распространенные шаговые двигатели имеют 200 полных шагов на оборот, но контроллеры также обеспечивают и микро-шаговые режимы. Микрошаговые режимы помогают добиваться гладкого передвижения на высшем значении скорости подачи, и многие контроллеры позволяют производить 10 микрошагов на один полный шаг. 200-шаговый двигатель с 10 микрошагами на один полный шаг
обеспечивает 1/2000 оборота, как минимальный шаг. Как показано в примере выше, два микро-шага дадут желаемое минимальное перемещение на 0.0001 дюйма. Это, однако, должно рассматриваться с некоторыми оговорками. Тогда как число микрошагов на один шаг растет, крутящий момент быстро падает. В зависимости от нагрузки, ложащейся на двигатель, может не быть достаточного крутящего момента для действительного движения мотора на один микрошаг. Бывает необходимо сделать
несколько микрошагов прежде чем появится достаточный крутящий момент. В общем, для получения точных результатов используйте не микрошаговый режим. Основные преимущества микрошагового режима - уменьшение механических помех, сглаживание запуска и снижение резонансных проблем. Теперь обратим внимание на возможную скорость ускоренных переездов. Предположим, по минимуму, что максимальная скорость двигателя - 500 оборотов в минуту. В нашем примере с
ходовым винтом с шагом 0.1 дюйма, 500 оборотов в минуту дадут скорость ускоренных переездов 50 дюймов в минуту, или около 15 секунд для преодоления 12 дюймов длины направляющих. Этот результат является удовлетворительным, но не впечатляющим. На такой скорости электронике микрошагового привода двигателя требуется 16,667 (500 об./мин. * 200 шагов на оборот * 10 микрошагов на шаг / 60 секунд в минуте) импульсов в секунду. На компьютере с частотой 1 ГГц, Mach3 может генерировать одновременно по 35,000 импульсов в секунду для каждой из 6 возможных осей. Так что, с такой задачей она справится без проблем. Теперь следует определить требуемый для станка крутящий момент, который задаст параметры требующегося двигателя. Одним из способов измерить его, является установка станка на тяжелейший рез, который, как вы считаете, вам когда-нибудь придется сделать, применив наибольший затяг (скажем 12”) на ручном колесике, применяемом на направляющих, закрутив до отказа балансировочную пружину (или приспособив под эти цели пружину от кухонных весов). Крутящий момент для этого реза (в унциях-дюймах) - считанный баланс (в унциях) x 12. Другой способ, это использовать информацию о калибре и параметрах двигателя, который, как вы знаете, стоит на таком же станке с такими же направляющими и винтом. Поскольку шаговый двигатель может «терять шаги» с набеганием погрешности, лучше используйте двигатель большего калибра с запасом в крутящем моменте. Также вы можете увеличить крутящий момент с помощью редуктора. Если вычисленная скорость ускоренных переездов находится в разумных пределах, вы можете рассмотреть вариант снижения передаточного отношения до 2:1 (применив, скажем, зубчатую ременную передачу), что должно удвоить крутящий момент на винте. Это позволит использовать двигатель меньшего калибра (а, следовательно, и дешевле).

Привод портального трассировщика
Для портального трассировщика может потребоваться движение, по меньшей мере, на расстояние 60 дюймов по оси портала. Винт шарико-винтовой пары для такой длины - это слишком дорогое и сложное решение, так как, кроме прочего, его тяжело защитить от пыли. Многие разработчики приходят к использованию передач посредством цепей или зубчатых колес. Выберем минимальный шаг в 0.0005 дюйма. Ведущая шестерня с 20-ю зубцами и шагом ј дюйма дает порталу перемещение 5 дюймов на оборот шестерни. Шаговый двигатель (десять микрошагов) дает 2000 шагов на оборот, так что между двигателем и валом шестерни требуется редукция 5:1 (используя ремень или редуктор) и при передаточном отношении 5:1 один
оборот шагового двигателя даст в результате перемещение на 1 дюйм. С такой конструкцией, если мы получим 500 оборотов в минуту от шаговика, перемещение будет 500 дюймов в минуту или 8.33 дюйма в секунду. Ускоренный переезд на 60 дюймов, не принимая во внимание ускорение и замедление, займет 7.2 секунды . Вычисление крутящего момента на этом станке сложнее, чем на фрезере с поперечной кареткой, учитывая массу передвигаемого портала, инерцию, длительность ускорения и замедления, что, наверное, важнее, чем сила реза. Чужой опыт или самостоятельные эксперименты будут для многих лучшим решением.

Концевые выключатели (Limit) и выключатели Баз (Home switches)
Концевые выключатели (Limit) используются для того, чтобы не давать осям двигаться слишком далеко и тем самым избежать возможного повреждения станка. Вы можете использовать станок и без них, но небольшая ошибка в расчетах может повлечь за собой множество повреждений, устранение которых обойдется довольно дорого.

Лучшие статьи по теме