Антенны укв. Что такое УКВ антенна? Самодельные антенны переносной радиостанции
Эра технологий - Информационный сайт
  • Главная
  • Windows
  • Антенны укв. Что такое УКВ антенна? Самодельные антенны переносной радиостанции

Антенны укв. Что такое УКВ антенна? Самодельные антенны переносной радиостанции

Судовые антенно-фидерные устройства УКВ-диапазона

Морские и речные судовые УКВ-антенны

УКВ антенна – это элемент оборудования радиосвязи, работающего в диапазоне ультракоротких волн, преобразующий энергию распространяющихся в пространстве электромагнитных волн в электрические токи и наоборот, что соответствует приему и передаче радиосигнала. Антенны характеризуются комплексом параметров, определяющими из которых являются диаграмма направленности и коэффициент усиления. Диаграмма направленности УКВ антенны представляет собой графическую зависимость коэффициента усиления от направления излучения. Однако сама по себе антенна ничего не усиливает, а коэффициент усиления рассчитывается относительно мощности эталонной антенны.

Судовая УКВ антенна

В судовой отрасли для радиосвязи используется диапазон ультракоротких волн (УКВ), в большей степени подходящий для решения задач обмена информацией между судами или судами и берегом. Для морской радиосвязи выделены частоты от 156 до 162 МГц внутри диапазона VHF, в речной радиосвязи – частоты от 300 до 337 МГц, соответствующие диапазону UHF. Оба диапазона являются частью спектра УКВ, поэтому вне зависимости от назначения – морского или речного – антенны судовой радиосвязи принято называть УКВ антеннами .

Особенности судовых УКВ антенн состоят в том, что это преимущественно вертикальные антенны, располагаемые на мачтах, следовательно, все они имеют вертикальную поляризацию и равномерную диаграмму направленности, поскольку в море не существует выделенного направления распространения сигналов.

Свойство распространения ультракоротких волн позволяет достичь дальности связи в открытом море до 50 миль при условии расположения УКВ антенны выше четырех метров от ватерлинии судна. Это дает возможность быстро получить помощь от соседних судов или береговых служб в случае бедствия, а с другой, не ставит помехи другим судам, находящимся на еще большем удалении, благодаря чему они общаются между собой на одних и тех же каналах. В условиях Мирового океана и активного судоходства, одновременно нуждающихся в постоянной связи, УКВ-диапазон представляется наиболее подходящим для беспрепятственного общения в районе условной прямой видимости.

Вместе с тем, располагая УКВ антенну как можно выше и, казалось бы, увеличивая дальность связи, можно, напротив, снизить коэффициент полезного действия УКВ антенны за счет приема большего количества помех. Это сильно почувствуется, если за горизонтом вблизи резонансной частоты УКВ антенны работает мощный передатчик, полностью забивающий эфир. Если фильтровать собранные антенной "мусорные" сигналы, то вместе с ним есть все шансы отфильтровать и полезный сигнал, поэтому при поиске приемлемой высоты УКВ антенны рекомендуется придерживаться меры.

Также для улучшения характеристик приема и передачи УКВ сигналов есть вариант подогнать УКВ антенну под работу только на одной частоте. Такой путь также ведет к снижению общей производительности, поскольку антенная установка должна обеспечивать полноценную приемопередачу во всем используемом частотном диапазоне.

В отношении речной радиосвязи верны примерно все те же соображения, с той разницей, что в условиях рек используются радиоволны большей частоты, а значит с меньшей длиной волны, способные огибать характерные для рек препятствия, такие как береговые скалы, лесные зоны, элементы береговой инфраструктуры и т.п.

Таким образом, чтобы судовая связь соответствовала ожиданиям, и в случае моря, и в случае реки необходимо использовать оборудование от надежных мировых и отечественных производителей. УКВ антенны в зависимости от поднадзорности должны поставляться вместе с сертификатом либо Морского, либо Речного Регистра. Такие изделия отличаются строгим и даже аскетичным внешним видом, однако, несмотря на кажущуюся простоту, смысл качественной УКВ антенны заключен в том, как она настроена на требуемые частоты. Только производитель с серьезным опытом в состоянии поставить на рынок оборудование, конкурентоспособность которого устоит в течение длительных проверок временем.

УКВ антенны в «Маринэк»

Представленное на страницах каталога Интернет-магазина «Маринэк» , имеет конкурентное преимущество по сравнению с бесконечным перечнем устройств и систем, обращающимся на мировом рынке. Тщательный отбор оборудования среди предложений рынка благодаря постоянной практике комплексного оснащения судов, включая монтаж, пусконаладку и техническое обслуживание, позволяет инженерам «Маринэк» предлагать наиболее рациональное и востребованное судовое оборудование , в том числе оборудование радиосвязи и УКВ антенны , цель которого – безотказная работа в течение максимального времени с наибольшей выгодой для пользователя.

«Маринэк » предлагает морские антенны следующих производителей:

Чтобы судовая радиосвязь не вызывала вопросов, менеджеры « » проконсультируют и подберут оборудование исходя из требований заказчика и собственного опыта. Обратившись в « », вы последовательно закроете вопросы оснащения судна с наибольшей выгодой для себя.

Описаны конструкции антенн, а также приведены принципиальные схемы антенных усилителей для самодельной УКВ радиостанции (схема и описание) на диапазоны частот 144МГц, 430МГц и 1296МГц.

О характеристиках УКВ антенн

Эффективность антенны однозначно связана с ее геометрическими размерами, по этой причине антенна - это единственное устройство, входящее в состав радиостанции, которого не коснулся процесс миниатюризации радиоаппаратуры.

Изготовление и установка антенны - достаточно сложное и трудоемкое дело, тем более, что при этом приходится решать вопросы прочности и жесткости механических конструкций. Тем не менее повышение эффективности антенны - это единственный, не имеющий ограничений путь увеличения энергетического потенциала радиостанции.

Любую антенну можно представить в виде эквивалентной площадки, стоящей на пути распространения радиоволн. Чем больше ее площадь, тем больше коэффициент усиления антенны, формула:

где G - усиление антенны по отношению к изотропному излучателю; S - эквивалентная площадь, м2; лямбда - длина волны, м.

С точки зрения энергетики неважно, какую форму будет иметь эквивалентная площадка: будет ли она круглая, квадратная или будет иметь форму вытянутого прямоугольника. В любом случае при равной площади будет равный коэффициент усиления. Другое дело - диаграмма направленности; на нее форма эквивалентной площадки оказывает самое непосредственное влияние. Так, ширина главного лепестка диаграммы направленности может быть связана с линейными размерами площадки следующим приближенным выражением (формула):

А0(дельта_0) - ширина главного лепестка по уровню -3 дБ; град; лямбда -длина волны, м; l - линейный размер эквивалентной площадки в плоскости измерения диаграммы направленности, м.

Эта формула, переписанная в другом виде, позволяет по известной диаграмме направленности оценить размеры эквивалентной площадки: l = 50 * лямбда / дельта_0.

Пусть, например, испытания антенны диапазона 432 МГц показали, что ширина диаграммы направленности равна 25° в горизонтальной плоскости и 20° в вертикальной плоскости. Легко определить, что эквивалентная площадка будет иметь размер 1,4 м по горизонтали и 1,75 м по вертикали.

Такие оценки очень удобны, если предполагается увеличивать коэффициент усиления за счет соединения нескольких антенн в антенную решетку. Так, для рассмотренного примера расстояние между соседними этажами решетки должно равняться 1,75 м, а между соседними рядами-1,4 м. При меньших расстояниях -эквивалентные площадки будут взаимно перекрываться и общий коэффициент усиления будет меньше суммы коэффициентов усиления всех антенн.

При больших расстояниях появятся зазоры между отдельными площадками. В результате общее усиление возрастать не будет, зато будут неоправданно увеличиваться габариты антенны. При этом в главном лепестке диаграммы направленности появляются провалы, разбивающие его на несколько составляющих.

И хотя наличие таких провалов иногда может принести пользу (например, если необходимо отстроиться от помехи, азимут которой мало отличается от азимута корреспондента), в большинстве случаев подобная диаграмма направленности затрудняет работу в эфире.

Возвращаясь еще раз к вопросу об усилении антенны, надо отметить, что в общем случае коэффициент усиления является произведением коэффициента направленного действия и коэффициента полезного действия антенны (формула):

где К - к.н.д. антенны; n - к.п.д. антенны. Это значит, что недостаточно сделать антенну большой площади, надо еще суметь всю энергию, падающую на данную площадь, с минимальными потерями доставить к потребителю данной энергии, т. е. ко входу приемника. (Здесь и в дальнейшем будем использовать справедливый для антенн «принцип взаимности», который указывает на эквивалентность параметров антенны в режиме приема и передачи. Скажем, диаграмма направленности или к.п.д. не зависят от того, используется антенна для приема или передачи. Это позволяет каждый раз выбирать наиболее удобны» для рассуждений режим работы антенны.)

Излучение электромагнитной энергии связано с протеканием высокочастотного тока, поэтому потери в самой антенне определяются омическими потерями в металлических элементах. Большое влияние на коэффициент полезного действия антенно-фидерного тракта оказывают потери в кабельных линиях, которые надо обязательно учитывать при оценке энергетического потенциала радиостанции. При этом полезно помнить, что антенно-фидерный тракт используется как для приема, так и для передачи и, следовательно, потери в фидере дважды войдут в окончательный результат.

В таблице приведены краткие сведения о некоторых высокочастотных кабелях, которые находят применение в радиолюбительской практике. Из таблицы видно, что с ростом частоты потери в фидере быстро возрастают.

Так, например, 20-метровый отрезок кабеля типа РК-75-4-11 (старое название РК-1) ослабляет проходящий по нему сигнал на частоте 144 МГц в 2,1 раза (3,2 дБ), на частоте 432 МГц - в 3,4 раза (5,4 дБ), а на частоте 1296 МГц - в 13 раз (11,2 дБ). Видно, что на высокочастотных диапазонах потери возрастают до недопустимых значений.

К тому же здесь приведены данные для случая, когда отсутствуют отражения на концах линии, т. е. для случая работы на согласованную нагрузку. Если же сопротивление нагрузки отличается от волнового сопротивления кабеля, то часть энергии отражается от конца кабеля и движется в обратном направлении.

Эта отраженная часть энергии может возвратиться в нагрузку только после того, как она пройдет двойной путь от нагрузки к генератору и обратно от генератора к нагрузке. Если потери в фидере малы, то такие многократные переотражения вполне допустимы.

Такой режим «настроенного фидера», в частности, применяется в некоторых типах многодиапазонных КВ антенн. На УКВ, где потери в фидере резко возрастают, можно считать, что отраженная от нагрузки часть энергии практически полностью пропадает. Дело обстоит, однако, не столь плохо, как это может показаться на первый взгляд. Для того, чтобы оценить потери на рассогласование, запишем к.с.в. как функцию коэффициента отражения (формула):

здесь Г - коэффициент отражения;

отсюда легко получить выражение для расчета величины потерь (формула):

Рис. 31. Технические и волновые параметры коаксиальных кабелей.

Это выражение в графическом виде показано на рис. 32. Видно, что даже при к.с.в.=3 потери достигают всего 25%. Если же потери в самом фидере не очень велики, то за счет частичного возврата отраженной энергии потери на отражение будут еще меньше.

Так, для случая потерь в фидере 2 дБ потери на отражения при к.с.в. = 3 уменьшается с 25 до 20%. Видно, что нет смысла стремиться к к.с.в. = 1,1 или даже 1,01, кап это дается в описании некоторых радиолюбительских антенн. Так, при к.с.в.= 1,5 потери па отражение даже в худшем случае составят всего 4%. Отсюда же следует, что без особых потерь можно питать антенну со входным сопротивлением 50 Ом с помощью коаксиального кабеля с волновым сопротивлением 75 Ом, так как при этом к.с.в. будет равняться 1,5.

Рис. 32. Зависимость потерь на отражение от к. с. в.

Рассмотрим теперь особенности, присущие антенно-фидерной системе в режиме приема. В этом режиме существенную роль начинают играть шумовые свойства антенны. По этой причине для приемной антенны часто вводят понятие шумовой температуры. Если, например шумовая температура антенны равна 200 К. то это значит, что антенна генерирует такие же шумы, какие генерировало

бы активное сопротивление, нагретое до температуры 200К. Шумы антенны складываются из внешних и внутренних. Внешние шумы - это тот источник помех, который принципиально ограничивает возможности приема слабых сигналов.

При антенне, направленной на, горизонт, это прежде всего тепловые шумы земной поверхности, различного рода индустриальные помехи, а также шумы космического происхождения. Внутренние шумы определяются наличием потерь в антенне и фидере. Как и всякое активное сопротивление, сопротивление потерь генерирует" тепловой шум.

По этой причине чувствительность приемника ухудшается не только за счет того, что происходит затухание полученного полезного сигнала в фидере, а также за счет того, что фидер генерирует дополнительные шумы. Оба эти фактора учтены в простой формуле „для аттенюатора, нагретого до температуры окружающей среды. Коэффициент шума приемника с учетом потерь в фидере равен (формула):

где Fобщ - результирующий коэффициент шума; L - ослабление в фидере или в любом другом пассивном четырехполюснике; Fпр- собственный коэффициент шума приемника.

Таким образом, зная коэффициент шума приемника и рассчитав с помощью таблицы затухание в фидере, можно легко определить результирующий коэффициент шума приемника со стороны зажимов антенны. Можно также решить -обратную задачу, то есть, измерив коэффициент шума с фидером и без фидера, определить потери в кабеле. Это более надежный путь, так как в силу различных причин реальные потери в кабеле могут значительно отличаться от табличных.

Видно, что потери в фидере оказывают существенное влияние на потенциальные возможности радиостанции. В результате могут быть сведены на нет усилия, затраченные на изготовление большой и сложной антенны. И если в режиме передачи еще можно как-то компенсировать потери в фидере за счет увеличения мощности, то в режиме приема потери носят необратимый характер. Разрешить данную проблему помогают антенные предусилители, расположенные в непосредственной близости от антенны.

Вопрос о необходимости применения такого усилителя надо решать в каждом конкретном случае, сравнивая внешние шумы антенны и внутренние шумы приемника. Для того, чтобы обеспечивать нормальный режим работы входной цепи приемника, вместо антенны надо подключать резистор, сопротивление которого равно волновому сопротивлению фидера.

Если даже в самые благоприятные ночные часы шумы антенны заметно (в 2 раза и более) превышает шумы резистора, применять антенный усилитель ие следует. Более того, лишний каскад усиления сделает приемник более уязвимым по отношению к помехам от близких радиостанций.

Для того, чтобы подключать предусилитель в режиме приема, нужно иметь два высокочастотных реле или одно реле и отдельный фидер, соединяющий выход предусилителя со входом приемника.

Схемы антенных УКВ предусилителей

Схемы антенных предусилителей можно позаимствовать из схем траисвертеров соответствующих диапазонов. Для примера на рис. 33, а показана схема антенного усилителя для диапазона 144 МГц, а на рис. 33,6 - для диапазона 432 МГц.

Методика настройки предусилителей не отличается от методики настройки соответствующих каскадов трансвертеров.

В случае, если антенные реле не обеспечивают достаточной развязки, возникает задача защиты предусилителя от сигнала передатчика. В качестве одной из мер защиты в базовую цепь транзисторов включены диоды Д1. При настройке надо обязательно проверить, не ухудшает ли подключение защитного диода коэффициент шума предусилителя.

Рис. 33. Схемы антенных усилителей.

Проблемы защиты полностью отпадают, если в качестве предусилителя использовать мощный многоэмиттерный транзистор КТ610 или КТ911. Схема такого предусилителя, предназначенного для диапазона 144 МГц, показана на рис. 34. Катушка L1 содержит два витка посеребренного провода диаметром 1,0 мм.

Диаметр оправки-10 мм. Настройку усилителя надо начинать с установки режима транзистора по постоянному току. Подбором резистора R1 надо добиться, чтобы коллекторный ток транзистора составил 15-25 мА.

Pис. 31. Антенный усилитель диапазона 144 МГц, выполненный на многоэмиттерном транзисторе.

Предусилитель имеет следующие характеристики: коэффициент усиления около 20 дБ, коэффициент шума 1,5-1,8. Для предотвращения выхода из строя последующих каскадов усиления желательно в режиме передачи снимать напряжение питания с транзистора Т1, а еще лучше соединять провод питания предусилителя с землей.

Конструкции антенн УКВ диапазона

Рассмотрим теперь некоторые практические конструкции антенн. На протяжении многих лет наибольшей популярностью среди радиолюбителей пользуются антенны типа «волновой канал», которые также известны под названием; «директорные антенны» и «антенны Уда-Яги». Эти антенны, относящиеся к классу антенн с осевым излучением, имеют наилучшее отношение усиления к. массе и к тому же очень просты по конструкции.

Основной недостаток, ограничивший применение таких антенн в промышленных связи, - это узкополосность. Однако для радиолюбителей этот недостаток не играет большой роли, так как ширина отведенных для радиолюбительских связей диапазонов также невелика.

В последнее время были предприняты многочисленные попытки усовершенствования антенны «волновой канал» с целью увеличить ее коэффициент усиления. В качестве активного элемента использовался отрезок логопериодической антенны (антенна типа «Swan») или использовались более сложные пассивные элементы, состоящие, например, из четырех полуволновых вибраторов (многочисленные типы антенн, выпускаемых западными странами для приема телевидения на дециметровых волнах).

Однако все эти ухищрения не дают существенного выигрыша, так как в конечном счете коэффициент усиления любой антенны с осевым излучением определяется ее длиной. Применение же более сложных вибраторов эквивалентно использованию нескольких обычных антенн «волновой канал», находящихся на очень маленьком расстоянии друг от друга. Как уже указывалось, это эквивалентно почти полному взаимному перекрытию эквивалентных площадок, а следовательно, получаемый выигрыш также невелик.

Рис. 35. Восьмиэлементная антенна Quagi для диапазона 144 МГц, в скобках даны размеры для диапазона 432 МГц.

Из усовершенствованных антенн «волновой канал», пожалуй, наибольший интерес представляют антенны типа «Quagi». Название составлено из двух английских слов «Quad» и «Yagi» и указывает на то, что антенна является гибридом антенны типа «квадрат» и типа «Яги».

Собственно, от «квадрата» взяты только активный элемент и рефлекторная рамка, а все директоры такие же, как и в антенне «волновой канал». Питание антенны осуществляется кабелем с волновым сопротивлением 50 Ом. Кабель присоединяется непосредственно в разрыв активной рамки без какого-либо согласующего устройства.

Рефлекторная рамка имеет периметр 2200 мм (711 мм), а активная - 2083 мм (676 мм). Здесь и далее в скобках указаны размеры для диапазона 432 МГц.

Обе рамки изготовлены из медного провода диаметром 2,5-3 мм и закреплены иа несущей траверсе с помощью полосок из органического стекла. Несущая траверса имеет длину 420 см (140 см) н изготовлена из деревянного, лучше соснового, бруска сечением 2,5X8 см (1,2x5 см). Для облегчения конструкции высоту бруска можно уменьшить к концам антенны. Директоры изготовлены нз алюминиевой или медной проволоки диаметром 3 мм.

Выходное сопротивление антенны 50 Ом, однако без больших потерь ее можно питать кабелем с волновым сопротивлением 75 Ом. При использовании нескольких антенн расстояние между соседними этажами н рядами должно составлять 3,35 м (1,09 м).

Аналогичную конструкцию имеет более эффективная Quagi-антенна, предназначенная для диапазона 432 МГц. Несущая траверса изготовлена нз деревянного бруска длиной 370 см и сечением 2,5x5 см. Высота бруска плавно уменьшается к концам до 1,5 см.

Длина рефлекторной рамки 711 мм, а активной-676 мм. Обе рамки изготовлены из медной проволоки диаметром

2,5 мм. Директоры изготовлены из проволоки диаметром 3 мм. Остальные размеры показаны на рис. 36.

Антенна питается коаксиальным кабелём с волновым сопротивлением 50 Ом без симметрирующего устройства. В принципе эту антенну можно использовать для диапазона 1296 МГц, при этом диаметр проволоки н все остальные размеры следует уменьшить в 3 раза.

Рис. 36. Пятнадцатиэлементная антенна Quagi для диапазона 432 МГц.

Из антенн, специально предназначенных для диапазона 1296 МГц, представляет интерес антенна, предложенная английским ультракоротковолновнком G3JVL. Антенна представляет собой «волновой канал» с кольцевыми вибрато

рами, своего рода разновидность многоэлементной рамочной антенны. Антенна содержит 28 элементов, включая дополнительный рефлектор из алюминиевой сетки и 27 кольцевых вибраторов. Основной рефлектор и все директоры изготовлены из алюминиевых полосок шириной 4,8 мм и толщиной 0,7 мм.

На концах полосок просверлены отверстия под винт М3. Расстояние между центрами отверстии равно 246 мм для рефлектора, 210 мм для первых 11 директоров и 203 мм для остальных директоров. Затем полоски свернуты в кольцо и привинчены к несущей дюралюминиевой трубке диаметром 12-15 мм. Расстояния между элементами показаны на рис.

37. Размеры дополнительного рефлектора показаны па рис. 38, а.

Рис. 37. Двадцативосьмиэлементная антенна для диапазона 1296 МГц, расстояния до элементов отсчитаны от дополнительного рефлектора.

Рис. 38. Антенна для диапазона 1296 МГц.

Конструкция активного элемента показана на рис. 38,6. В отличие от остальных элементов активная рамка изготовлена нз медной полоски. Периметр рамки 235 мм.

Рамка крепится к несущей трубке с помощью болта с резьбой Мб. Тонкий кабель с фторопластовой изоляцией пропущен через отверстие, просверленное, по оси болта. В середине полоски, из которой изготовлена активная рамка, также просверлено отверстие для кабеля. Рамка крепится к головке болта с помощью пайки. Оплетка кабеля также припаяна к головке болта.

Тонкий кабель, имеющий повышенное затухание, должен быть по возможности короче. Он заканчивается высокочастотным разъемом, к которому подключается основной фидер. Возможен вариант, при котором более толстый кабель пропущен ие через крепежный болт, а через отверстие, просверленное в несущей трубке позади активной рамки.

При этом необходимо также обеспечить контакт оплетки кабеля с основанием рамки.

В приведенных описаниях антенн намеренно не указаны данные о коэффициенте усиления. Дело в том, что точное измерение усиления антенны достаточно трудное дело, требующее специальных условий. В результате в радиолюбительской литературе часто появляются различные данные.

Так, кажется несколько завышенной цифра, приведенная автором описанной выше антенны для диапазона 1296 МГц - 20 дБ. Более реально выглядят данные, приведенные для антенны типа «Quagi»,- 12 дБ для 8-элементной антенны и 15 дБ для 15-элементной антенны.

Жутяев С. Г. Любительская УКВ радиостанция, 1981 год.

Все снова и снова ультракоротковолновики спрашивают у своих старших коллег: "Какую антенну выбрать?" Точно ответить на этот вопрос невозможно, так как все зависит от того, для какой цели строится антенна. Если предполагаются связи во всех направлениях, например внутри города, то очень удобны антенны с круговой диаграммой, которые часто позволяют работать при расстояниях между станциями, равных 50-100 км. Для дальних связей более подходят направленные антенны. В "густозаселенных" ультракоротковолновиками районах или в случаях, когда с некоторых направлений идут помехи, несомненно, лучше использовать антенны остронаправленные.

Этих немногих примеров достаточно, чтобы понять, что антенны, одинаково годной на все случаи, нет. Радиолюбитель должен сам выбрать антенну, отвечающую основным его требованиям. А еще лучше построить две-три антенны и использовать их по мере необходимости.

Начинающему ультракоротковолновику неразумно выбирать своей первой антенной какую-либо громоздкую и сложную конструкцию, в процессе постройки которой он по неопытности может наделать множество ошибок. Следует начинать с постройки простейших антенн и по мере роста опыта и знаний переходить к более сложным системам.

При выборе типа антенны нужно учитывать и то, какие основные материалы имеются в распоряжении конструктора. Если нельзя приобрести трубы или прутки для антенных элементов, то можно выбрать, например, "двойной квадрат", при постройке которого требуется лишь провод, деревянные рейки и небольшое количество изоляционного материала. Существенно также, как будет выполнена Питающая линия - из коаксиального или, ленточного кабеля, либо просто в виде двухпроводной линии.

Нельзя упускать из вида и то, нужны ли при постройке антенны какие-либо измерения. Начинающему, к тому же не располагающему измерительной аппаратурой, лучше выбрать антенну, которая наверняка станет хорошо работать без настройки.

Рассмотрим ряд типов антенн. Среди них есть простые конструкции, доступные для повторения каждым новичком, и сложные, в том числе антенные системы, которые могут заинтересовать более опытных "охотников" за DX. Так как большая часть наших ультракоротковолновиков работает в диапазоне 144 МГц, размеры антенн Приведены именно для этого диапазона.

Читатель заметит, что ни для одной из антенн не приводятся технические подробности конструкции. Но это не должно помешать постройке, так как приемы работы и многие детали описаны в любом справочнике радиолюбителя.

АНТЕННЫ КРУГОВОГО ИЗЛУЧЕНИЯ

Крестообразный диполь. Антенна состоит из двух полуволновых вибраторов 1, расположенных под углом 90° друг к другу (рис. 1). Диаграмма излучения этой антенны- далеко не идеальный круг, но практически она дает вполне хорошее круговое излучение. Так как волновое сопротивление одного диполя равно примерно 70 Ом, при параллельном включении двух диполей волновое сопротивление составляет около 35 Ом. Такого коаксиального кабеля в нашем распоряжении нет, поэтому лучше всего питать антенну через четвертьволновый трансформатор 3, изготовленный из 50-омного кабеля. От трансформатора до аппаратуры идет 75-омный кабель 4. Из такого же кабеля выполнено симметрирующее U-колено 2.

Вертикальная антенна (Ground Plane). Излучатель 1 (рис. 2) и радиальные.проводники 2 обеспечивают круговую диаграмму в горизонтальной, плоскости. Угол между радиальными проводниками и излучателем определяет волновое сопротивление антенны.


рис. 2

При угле 90° волновое сопротивление равно примерно 30 Ом, при угле 180°- 70 Ом. Обычно выбирают угол 145°, что позволяет питать антенну 50-ом-ным кабелем. Кабель подключают к разъему 3, укрепленному на металлической пластине, к которой электрически присоединены радиальные проводники. Излучатель, к которому подключают центральный проводник кабеля, установлен на изоляторе 4.

НАПРАВЛЕННЫЕ АНТЕННЫ

"Двойной квадрат". Эта популярнейшая направленная KB антенна употребима и на УКВ (рис. 3,а). Коэффициент ее усиления (по сравнению с полуволновым вибратором) достигает 5,7 дБ, соотношение излучения вперед/назад - 25 дБ.


рис. 3

Расстояние между активным вибратором 1 и рефлектором 2 выбрано равным 0,15 лямбда, что позволяет питать антенну 75-омным коаксиальным кабелем 3. Опыт показал, что питаемая таким образом антенна работает вполне удовлетворительно. Настраивать антенну можно с помощью короткозамкнутого шлейфа, включенного в разрыв рамки рефлектора.

Для симметрирования антенны можно применить четвертьволновый стакан (рис. 3, б), подключив его к концам активного вибратора 1. Стакан состоит из металлического цилиндра 4 с двумя крышками - металлической 5 и диэлектрической 6. Внутри стакана проходит кабель 3, оплетка кабеля подключена к крышке 5. Диаметр стакана должен быть в 3-4 раза больше диаметра кабеля.

Для изготовления элементов антенны можно использовать медную или алюминиевую трубку, ленту или провод самого различного диаметра. "Двойной квадрат" занимает очень мало места, конструктивно прост. Эта антенна имеет сравнительно хорошие характеристики. Заслуживает внимания возможность размещения антенн разных диапазонов на тех же крестообразных рейках.

Треугольная антенна (Delta Loop) принадлежит к тому же семейству, что и "квадрат", так как периметр активного вибратора приблизительно равен длине волны. Особенностью этой антенны является то, что все элементы ее конструкции - металлические. Автор антенны советовал питать ее 50-омным коаксиальным кабелем, но для этой цели успешно используют и 75-омный кабель. Простейшая треугольная антенна показана на рис. 4. Активный вибратор 1 настраивают с помощью гамма-согласующего устройства, к которому подключен кабель 3. В зависимости от наличия измерительных приборов настройку ведут по минимуму КСВ или по максимальной силе сигнала. Рефлектор 2 для упрощения можно сделать нерегулируемым.


рис. 4

С треугольной антенной много экспериментировал UA1WW. Он советует применять 5-и 9-элементные варианты. Последний, благодаря малому горизонтальному углу излучения, особенно подходит для проведения дальних связей. Чертеж 5-элементной антенны приведен на рис. 5. Здесь 1 - активный вибратор, 2 - рефлектор, 3-5 - директоры. Так как это - совершенно новая для наших ультракоротковолновиков антенна, приводим некоторые конструктивные данные.


рис. 5

Для несущей траверсы больше всего подходит 4-гранная дюралюминиевая труба со стороной квадрата 18-20 мм, на ней гораздо удобнее крепить элементы, чем на круглой трубе (см. рис. 6).


рис. 6

Элементы антенны изготовляют из медной или алюминиевой трубки или прутка диаметром 6 мм, горизонтальную сторону -из провода диаметром 3 мм. Размеры элементов (в соответствии с рис. 6) таковы:

Треугольная антенна - объект интереса ультракоротковолновиков всего мира. Принимая во внимание положительный опыт работы с ней, можно считать, что она скоро станет одной из самых популярных антенн. Поэтому обращаем внимание желающих экспериментировать на один особый ее тип - двойную треугольную антенну (рис. 7). Размеры треугольников этой антенны немного больше, чем у одинарной; периметр рефлектора равен 2266, активного вибратора - 2116 и директора - 1993 мм. Расстояние между рефлектором и вибратором-0,2 лямбда, между вибратором и директором-0,15 лямбда.


рис. 7

По некоторым данным были получены такие коэффициенты усиления двойной антенны (по сравнению с полуволновым вибратором):один элемент (активный вибратор) - 3-4 дБ: два элемента (вибратор и рефлектор) - 8-9 дБ: три элемента (рефлектор, вибратор в директор),- 10-11 дБ. Кажется, что это перспективный вид антенны и им стоит заняться.

10-элементная антенна (Yagi). Несомненно, это - наиболее популярная УКВ антенна (рис. 8). Она дает усиление 13 дБ. Автор проводил с помощью такой антенны метеорные связи с Англией и Бельгией, много дальних связей за счет тропосферного прохождения и "авроры".


рис. 8

Пассивные элементы антенны изготовлены из биметаллического провода диаметром 4 мм, а активный петлевой вибратор - из 15-милли-метровой медной трубки и такого же провода. Волновое сопротивление в точке питания равно 300 Ом, поэтому 75-омный кабель подключен через U-колено, длина которого равна 68 см.

Длина несущей траверсы - несколько больше 3,5 м, диаметр - 20 мм. Длина рефлектора 7-1060, вибратора 2-990, директоров 3- 10 - соответственно 933, 930, 927, 924, 921, 918, 915 и 912 мм.

Антенна на несколько диапазонов. Бывают обстоятельства, когда установить более одной антенны не удается. Но ведь кроме антенны для радиостанции часто нужна и телевизионная! Тогда выход из положения - УKB антенна на несколько диапазонов. Один из вариантов такой антенны приведен на рис. 9, а (вид сверху) и 9, б (аксонометрическая проекция). Она может быть успешно использована в диапазонах от 50 до 220 МГц. Коэффициент усиления антенны на частоте 50 МГц- 7 дБ, 144 МГц-12 дБ, а на 220 МГц- даже 13,5 дБ. Эта антенна -двухэтажная. На частоте 50 МГц на каждом этаже работают по два уголковых вибратора 1, расположенных на расстоянии лямбда/4. На частоте 144 МГц их длина равна примерно 3/4 лямбда и поэтому получается уже V-образная антенна. На частоте 220 МГц вибраторы имеют длину 5/4 лямбда.


рис. 9

Вибраторы соединены между собой двухпроводными линиями 2, а оба этажа - линиями 3, длина которых в зависимости от диапазона составляет от 1/4 до 5/4 лямбда. Расстояние между этажами при желании можно изменять в пределах, допускаемых длиной линий 3. Входное сопротивление антенны в точке питания 4 на частотах 50 и 144 МГц - около 300 Ом, на частоте 220 МГц оно падает примерно до 200 Ом.

Элементы антенны можно изготовить из трубки или прутка: вибраторы - диаметром 10 мм; линии 2 - диаметром 12 мм (можно и 10 мм, тогда расстояние между центрами проводов линии следует выбрать равным 64 мм): линии 3 - диаметром 6 мм.

РАДИО № 8, 1973г. с.20-23.

На УКВ работают радиостанции самого различного назначения: радиолокационные, связные, телевизионные, радиовещательные и т. п. На этих же волнах в последнее время начали работать и радиолюбительские приемо-передающие радиостанции.

Приемные и передающие антенны, применяемые на УКВ, значительно отличаются от антенн для длинных, средних и даже коротких волн.

УКВ антенны имеют относительно небольшие размеры при весьма хороших качественных показателях. Внутри УКВ диапазона антенны различных поддиапазонов также резко отличаются друг от друга как по принципу действия, так и по конструкции. Так, например, антенны сантиметрового поддиапазона сильно отличаются от антенн метрового поддиапазона. Между ними трудно найти даже какое-либо внешнее сходство.

Мы будем рассказывать об антеннах, к которым з -настоящее время радиолюбители и телезрители проявляют наибольший интерес: об антеннах метрового диапазона (10—1 м) и длинноволновой части дециметрового диапазона (1 м — 50 см). Эти антенны применяются в повседневной практике для приема телевидения и в качестве приемных и передающих антенн связных радиолюбительских УКВ станций.

Выбор и -конструирование приемной и передающей аінтенн — весьма серьезный этап в практике работ радиолюбителя. Поэтому мы хотим рассказать о некоторых важнейших свойствах УКВ антенн, что поможет разумно и обоснованно выбирать антенны для различных УКВ установок.

Направленные свойства УКВ антенн. Под направленными свойствами антенн понимают их способность излучать электромагнитную энергию относительно узкими пучками в определенных желаемых направлениях. Дело в том, что вообще не существует антенн, излучающих электромагнитную энергию равномерно во всех направлениях.

Рассмотрим сначала простейшую и в то же время наиболее распространенную УКВ антенну — симметричный полуволновый вибратор (рис. 1). Этот вибратор состоит из двух расположенных на одной оси металлических стержней. Общая длина вибратора составляет примерно половину длины волны. Расположим вибратор. горизонтально, т. е. параллельно земле, и мысленно проведем плоскость перпендикулярно оси вибратора (вертикальную плоскость). В этой плоскости излучаемая мощность распределяется равномерно во всех направлениях. Поэтому говорят, что горизонтальный вибратор является ненаправленным в вертикальной плоскости. В горизонтальной же плоскости излучение является направленным, причем наибольшая мощность излучается перпендикулярно вибратору, а в направлении его оси излучение полностью отсутствует

Соответственно вертикально расположенный вибратор излучает равномерно во всех направлениях в горизонтальной плоскости и неравномерно—в вертикальной.

Рис. 1. Диаграммы направленности полуволнового вибратора.

Для наглядности направленные свойства антенн изображают графически в виде диаграмм направленности в горизонтальной и вертикальной плоскостях (рис. 1). Необходимо подчеркнуть, что диаграмма направленности не дает возможности определить, какую же мощность излучает антенна в определенном заданном направлении, поскольку величина этой мощности зависит не только от формы диаграммы, но и от общей мощности передатчика. Диаграмма направленности антенны характеризует. лишь распределение мощности передатчика в пространстве независимо от полной величины этой мощности и определяется только конструкцией антенны.

На рис. 2 изображены для примера некоторые воз-можные диаграммы направленности УКВ антенн в горизонтальной плоскости.

Антенна, имеющая диаграмму типа а, излучает в горизонтальной плоскости равномерно во все стороны. Такую диаграмму должны иметь антенна радиолюбительского передатчика, если направление на корреспондента заранее неизвестно, а также телевизионная передающая антенна.

Диаграммы типов б и в имеют два симметричных лепестка. Антенны с такими диаграммами излучают одинаково в двух противоположных направлениях. Часто бывает полезным сконцентрировать излучение только в одном направлении. Тогда інужно воспользоваться однонаправленными антеннами, имеющими диаграммы направленности типа д.

Как видно из рисунка, эти диаграммы имеют обычно, помимо основного лепестка, небольшие «задние» или «боковые» лепестки, что указывает на некоторый расход мощности передатчика на излучение в нежелательных направлениях. Отметим, что антенна с диаграммой направленности типа д излучает электромагнитные волны более узким пучком и является, следовательно, более направленной. Ширина основного лепестка диаграммы направленности измеряется в градусах и отсчитывается по уровню половинной мощности или 0,7 напряжения (угол а на диаграмме г).

Рис. 2. Различные формы диаграмм направленности УКВ антенн.

Возникает вопрос: как выбрать передающую УКВ антенну с точки зрения формы диаграммы направленности? Для ответа на этот вопрос необходимо знать, в пределах -какого угла может меняться направление от передающей антенны к возможному корреспонденту.

Необходимо, чтобы этот угол укладывался в пределах угла раствора основного лепестка диаграммы направленности по уровню половинной мощности.

Заметим, что чем уже основной лепесток диаграммы направленности и чем меньше задние и боковые лепестки, тем большая мощность излучаемых волн (при неизменной общей мощности передатчика) излучается в главном направлении и тем больше дальность связи в этом направлении.

Основные типы антенн и соответствующие им диаграммы направленности будут показаны ниже. До сих пор мы рассматривали передающие антенны. А как обстоит дело с направленными свойствами приемных антенн?

Пусть некоторая аінтенна используется как передающая для излучения сигналов в пространство и имеет диаграмму направленности, изображенную на рис. 2,д. Максимум мощности излучаемых волн соответствует направлению, показанному сплошной стрелкой. Если эту же самую антенну применить для приема, то мощность сигналов, поступающих на вход приемника, будет максимальной, когда сигнал приходит с того же направления (пунктирная стрелка).

Таким образом, оказывается, что диаграмма направленности любой антенны остается неизменной при работе ее как на передачу, так и на прием. При выборе типа приемной антенны с точки зрения диаграммы направленности нужно учитывать те же соображения относительно необходимого угла раствора диаграммы в горизонтальной плоскости.

Следует еще добавить, что чем уже основной лепесток диаграммы направленности и меньше баковые лепестки, тем слабее сказываются различные помехи приему (медицинские, индустриальные и т. п.).

Коэффициент усиления УКВ антенн. Приемные и передающие УКВ антенны характеризуются не только диаграммой направленности, но и величиной коэффициента усиления.

Пусть имеются два передатчика одинаковой мощности. Антенна первого передатчика — полуволновый вибратор (рис. 1), антенна второго передатчика — однонаправленная с диаграммой, изображенной на рис. 2,д. Антенна второго передатчика создает в главном направлении более сильное электромагнитное поле. Это, очевидно, объясняется тем, что, во-первых, антенна второго передатчика излучает только в одну сторону и, во-вторых, концентрирует излучение в более узком пучке. Если антенна второго передатчика создает на определенном расстоянии электромагнитное поле, например, вдвое большей силы (напряженности), то говорят, что эта антенна имеет относительно полуволнового вибратора коэффициент усиления по полю, равный 2.

Коэффициент усиления любой антенны определяют путем ее сравнения с полуволновым вибратором, коэффициент усиления которого условно принят равным единице.

Понятие коэффициента усиления можно распространить и на приемные антенны. При этом коэффициент усиления по полю показывает, во сколько раз увеличивается напряжение на входе приемника при использовании данной антенны по сравнению со случаем использования полуволнового вибратора.

Нужно заметить, что увеличение коэффициента усиления необязательно связано с уменьшением ширины диаграммы направленности в горизонтальной плоскости. Можно увеличить коэффициент усиления приемных и передающих антенн УКВ станций, сужая диаграмму направленности в вертикальной плоскости и не ограничивая тем самым угол, в пределах которого возможна связь.

Фидеры для УКВ антенн. Приемная и передающая антенны связаны соответственно с приемником и передатчиком фидером.

Выбор типа фидера и способа его подключения к антенне — важный момент в процессе конструирования УКВ антенны как для приемо-передающей радиостанции, так и для телевизионного приемника.

В качестве фидеров могут быть применены симметричные кабели, экранированные (РД-13) или неэкранированные (КАТВ), и несимметричные экранированные (кабели РК-1. РК-3, РК-49, и т. п.). На рис. 3 показаны конструкции кабелей различных типов.

Как для телевизионных антенн, так и для антенн приемо-передающих УКВ радиостанций лучше всего использовать несимметричный экранированный кабель. Этот кабель относительно недорог; он может быть прикреплен простейшими скобками непосредственно к любой стене: деревянной, кирпичной и т. п. Кроме того, в случае применения такого кабеля практически исключаются потеря мощности передатчика и искажение диаграммы направленности антенны за счет излучения самого фидера.

Рис. 3. Кабели, применяемые на УКВ. а—несимметричный экранированный кабель; б—симметричный экранированный кабель; в—симметричный неэкранированный кабель.

Могут быть случаи, когда передатчик имеет симметричный выход, а переход на коаксиальный кабель почему-либо невозможен. В таких случаях следует применить экранированный симметричный кабель, а при отсутствии последнего — неэкранированный. Следует иметь в виду, что неэкранированный кабель крепится к стенам с помощью специальных изоляторов.

Подключение фидеров к антеннам различных типов нужно производить только так, как показано на приводимых ниже рисунках. Эти схемы подключения фидеров обеспечивают как симметрирование (при переходе от несимметричного кабеля к симметричной антенне), так и согласование. Неправильное подключение фидера к антенне приводит к уменьшению излученной мощности, а также к частотным искажениям передаваемого и принимаемого сигналов. При приеме телевидения могут появиться специфические искажения в виде повторных контуров изображения.

Типы антенн для любительских радиостанций и приема телевидения. В принципе для любительских приемо-передающих УКВ радиостанций и приема телевидения могут применяться антенны одних и тех же типов. Поэтому целесообразно рассказывать об этих антеннах одновременно, делая в случае необходимости соответствующие оговорки.

Простейшей, наиболее распространенной антенной для любительской УКВ радиостанции и для приема телевидения является полуволновый вибратор (рис. 4).

Полуволновый вибратор может быть использован на любом из 12 телевизионных каналов в диапазоне частот 48,5—230 Мгц, а также в радиолюбительских УКВ диапазонах: 28—29,7, 144—146 и 420—425 Мгц.

Существуют две основные разновидности полуволновых вибраторов: линейный полуволновый вибратор (рис. 4,а) и полуволновый шлейф-вибратор (рис. 4,6). По своим электрическим характеристикам оба вибратора являются примерно равноценными; они имеют одинаковые диаграммы направленности и одинаковые коэффициенты усиления. Полоса пропускания шлейф-вибратора несколько шире, однако это не имеет существенного значения, поскольку полоса правильно выполненного линейного вибратора вполне достаточна для пропускания частот любого телевизионного канала, а тем более канала радиолюбительской станции.

Оба вида вибраторов выполняются обычно из трубок (стальных, латуінных, медных, дюралюминиевых). Их можно изготовлять также из.металлических полосок или уголков. Основные конструктивные размеры их приведены на рис. 4. Под длиной волны Я в случае выполнения вибратора для приема телевидения следует понимать длину волны, соответствующую средней частоте телевизионного канала; в случае же выполнения вибратора для любительской УКВ радиостанции под К нужно понимать длину волны, соответствующую несущей частоте.

Возможные способы подключения фидеров к линейному полуволновому вибратору приведены на рис. 4,в, г, д и е. Схемы на рис. 4,в и г применяют в случае использования в качестве фидеров несимметричных экранированных кабелей с волновым сопротивлением 75 ом (РК-1, РК-3 и т. д.).

В схеме на рис. 4,в подключение кабеля производится через U-образиое колено из того же кабеля; в схеме на рис. 4,г кабель подключается через симметрирующий короткозамкнутый мостик, изготовленный из трубок. Обе схемы являются примерно равноценными, хотя схема, изображенная на рис. 4,г, обеспечивает все же пропускание более широкой полосы частот. Схема на рис. 4, д применяется в случае использования в качестве фидера симметричного экранированного кабеля РД-13 с волновым сопротивлением 75 ом, схема на рис. 4,е — в случае использования симметричного неэкранированного ленточного кабеля КАТВ с волновым сопротивлением 300 ом.

Рис. 4. Схемы подключения кабелей к вибраторам.

в—линейный полуволновый вибратор; б—полуволновый шлейфвибратор; в—подключение кабеля через колено; г—подключение кабеля через четвертьволновый мостик; д — подключение симметричного экранированного кабеля; е — подключение симметричного неэкранированного кабеля; ж—подключение кабеля через U-колено; з — подключение симметричного неэкранированного кабеля; п — подключение симметричного экранированного кабеля; к — подключение кабеля к несимметричному четвертьволновому вибратору.

Возможные способы подключения фидеров к полуволновому шлейф-вибратору (вибратору Пистолькорса) показаны на рис. 4,ж,з и и. Схема на рис. 4,ж применяется при использовании несимметричных экранированных кабелей с волновым сопротивлением 75 ом (РК-1, РК-3 и т. д.), схема на рис. 4,з — при использовании симметричного неэкранированного кабеля с волновым сопротивлением 300 ом (КАТВ), схема на рис. 4,и — при использовании симметричного экранированного кабеля с волновым сопротивлением 75 ом (РД-13).

На рис. 4,к показана антеніна, называемая четвертьволновым вертикальным вибратором и применяемая обычно в тех случаях, когда антенну можно расположить над большим металлическим листом (например, для автомобильных станций).

Заметим, что для обеспечения согласования кабеля с антенной в схемах на рис. 4,е и и кабели подключаются через четвертьволновые согласующие трансформаторы, выполненные из отрезков кабеля.

Все рассмотренные схемы подключения фидеров к полуволновым вибраторам с равным успехом могут быть использованы как для передающих, так и для поиемных антенн.

Какой вибратор лучше применять: линейный или шлейф-вибратор? Мы уже отмечали, что с точки зрения электрических характеристик оба вибратора примерно равноценны. Поставленный вопрос следует решать, исходя только из конструктивных соображений и наличных материалов. Шлейф-вибратор требует, например, для изготовления вдвое большего расхода трубок. В то же время шлейф-вибратор легко установить на любой мачте — металлической или деревянной, так как его можно прикрепить в средней точке (точка 0 на рис. 4,6) непосредственно к мачте с помощью сварки или металлического хомута без всяких изоляторов. Крепление линейного вибратора к мачте требует изоляторов: керамических, пластмассовых, полистироловых или из органического стекла.

В качестве антенн с относительно большим коэффициентом усиления и с лучшими направленными свойствами, чем у полуволнового вибратора, для приема телевидения и для УКВ любительских станций применяют антенны типа «волновой канал», состоящие из нескольких вибраторов.

Простейшая антенна этого типа — двухэлементная—состоит из двух вибраторов (рис. 5,а), расположенных в одной плоскости и закрепленных на стреле, которая выполняется из металлической трубы, уголка или деревянного бруса.

Рис. 5. Направленные УКВ антенны типа „волновой канал. а—двухэлементная, антенна (коэффициент усиления по напряжению 1,35); б—трехэлементная антенна (коэффициент усиления по напряжению 1,85); в—пятиэлементная антенна (коэффициент усиления по напряжению 2,4).

В качестве одного из вибраторов, который называют активным (к этому вибратору подключается фидер), используют линейный полуволновый вибратор или полуволновый шлейф-вибратор, описанные выше и показанные на рис. 4. Второй из вибраторов двухэлементной антенны — пассивный (к нему фидер не подключается)—представляет собой цельную металлическую трубку, закрепленную «а стреле непосредственно, без всяких изоляторов. Крепление "пассивного вибратора, как и активного, производится симметрично относительно стрелы. Длину пассивного вибратора и его расстояние до активного выбирают таким образом, чтобы направить излученную активным вибратором мощность только в одну сторону. С этой точки зрения пассивный вибратор двухэлементной антенны называют рефлектором. Таким образом, двухэлементная антенна является однонаправленной, что видно из приводимой диаграммы направленности.

Рис. 6. Контурно-щелевая антенна с рефлектором (коэффициент усиления по напряжению 1,9).

Трехэлементная антенна (рис. 5,б) содержит, помимо активного вибратора и рефлектора, еще один пассивный вибратор, называемый директором. Длина директора и его расстояние до активного вибратора выбраны таким образом, чтобы дополнительно усилить излучение в главном направлении. В соответствии с этим трехэлементная антенна имеет больший, чем у двухэлементной антенны, коэффициент усиления и более узкую диаграмму направленности.

Пятиэлементная антенна (рис. 5,в) содержит уже три директора, помимо рефлектора и активного вибратора, и имеет еще больший коэффициент усиления и еще более узкую диаграмму направленности.

Подключение фидеров к активным вибраторам многоэлементных антенн, изображенных на рис. 5, производится так, как показано на рис. 4,ж, з и и.

Можно, конечно, выполнить антенну с еще большим количеством директоров, однако особого смысла это не имеет, так как при увеличении числа директоров свыше трех происходит очень медленный рост коэффициента усиления, в то время как вес и сложность конструкции значительно возрастают. Если для чего-либо (например, для дальнего приема телевидения) необходимо иметь очень большой коэффициент усиления, то выполняют так называемые синфазные антенны, состоящие из многоэлементных антенн типа «волновой канал», расположенных в несколько этажей или рядов.

На рис. 6 показана УКВ антенна, называемая контурно-щелевой. Она состоит из прямоугольной рамки, представляющей собой активный элемент антенны, и рефлектора. Рефлектор выполнен из пяти трубок, образующих плоскую решетку.

Коэффициент усиления антенны равен примерно коэффициенту усиления трехэлементной антенны типа «волновой канал», однако полоса пропускания этой антенны шире.

Рис. 7. Антенна с уголковым отражателем (коэффициент усиления по напряжению 3,6).

Подключение кабеля производится к точхам а и б так, как показано на рис. 4 ,ж, з и м;

Максимум излучения направлен перпендикулярно плоскости рамки. Наибольшее распространение контурно-щелевая антенна с рефлектором имеет в радиолюбительском диапазоне 144 —146 Мгц.

Рис. 8. Рупорная антенна (коэффициент усиления по напряжению при l = 0,5К равен 1,3, а при l = лямбда равен 2,б).

Нужно отметить, что если антенна расположена так, что плоскость рамки перпендикулярна земле, то структура излученного поля подобна структуре поля горизонтального вибратора (излучаются или принимаются только горизонтально поляризованные волны).

В диапазоне 420—425 Мгц весьма удобны также антенна с уголковым отражателем (рис. 7) и -одна из разновидностей рупорных антенн (рис. 8).

К антенне с уголковым отражателем кабель КАТВ следует подключать в точках а и б. Две боковые грани рупорной антенны покрыты металлической сеткой. Кабель подключается к точкам а и б.

Вещательный FM-диапазон привлекает радиолюбителей. Свободные частоты занимают области 145 – 433 МГц, вот где проявим навыки конструирования аппаратуры. Берутся делать УКВ-антенны своими руками жители удаленных деревень, неуверенно принимающие сигнал. Причин проявления самостоятельности много, важно запретные области передачи обойти стороной - проблем не оберешься.

Задумал инженер друзья вещать, законом не воспрещается, когда сделано без нарушения государственных норм. Собрать передатчик, наладить процесс - отдельная проблема, каждому абоненту понадобится антенна для УКВ.

Цены любительского диапазона кусаются. Нестандартные изделия не пользуются великой популярностью, производить невыгодно, оттого стоимость высокая.

Любительский диапазон 145 МГц

Стационарные антенны УКВ-диапазона изготавливаются сравнительно просто. Основу выступает схема четвертьволнового вибратора. Изделия диапазона снабжены сравнительно широкой полосой пропускания, точная настройка под частоту не понадобится. Рассмотрим примеры конструкций:

  1. Для максимально простого способа изготовления приемной антенны - на природе, дома, в любом месте - понадобится Т-тройник. Перпендикулярный отвод снабжается коаксиалом, остальные два - выкрученным шпилем радиостанции, противовесами (аналогом земли УКВ-диапазона).
  2. Прямой уголок с квадратными сторонами 4 см прикрепляется к наружной стене, к краям горизонтальной площадки прикручиваются болтами противовесы длиной 5 см, посередине оборудуется разъем под антенну. Поскольку отвод коаксиального кабеля, идущий до конструкции, является основной причиной потери сигнала, длина отрезка обязана быть минимальной. Сделать самостоятельно золотые коннекторы будет сложновато, зачистить имеющиеся стальные, протереть спиртом, повышая чувствительность, необходимо в обязательном порядке. Поскольку стандартная антенна любительской радиостанции, вставляемая в гнездо площадки, обладает сопротивлением порядка 40 Ом, соединение проводится коаксиалом 50 Ом. Наконец, волновое сопротивление выносной антенны регулируется поворотом противовесов. На замену заводской антенне можно применять кусок медного провода диаметром 1-2 мм, длиной 48 см.
  3. Если фирменная антенна для УКВ приемника сломалась, замените отрезком коаксиального кабеля 50 Ом длиной 48 см со снятым экраном. Оголять жилу избегайте. Можно заменить изделием кусок провода в прошлом способе.
  4. Более сложный вариант получим, намотав полметра медной проволоки на внутренний диэлектрик коаксиала. Трудность заключается в согласовании сопротивления полученной самодельной конструкции с волновым сопротивлением радиостанции. После отладки закрепите витки изоляционной лентой.

Полуволновая антенна частоты 145 МГц

Рассмотренные выше четвертьволновые самодельные антенны УКВ не являются единственным выходом из ситуации. Преимущество в низком волновом сопротивлении, полуволновые варианты имеют право существовать. Отрезок проволоки диаметром 1 мм, длиной 103 см обладает сопротивлением 1 кОм, в 20 раз превышает стандартный коаксиал (50 Ом).

Для согласования разницы значений применяется П-образный контур. Резать будущую проволочную антенну следует на несколько сантиметров короче/длиннее величины 103 см. Незначительно увеличит потери за счет роста реактивной составляющей импеданса, значительно снизив действительную часть импеданса, согласующее устройство легче будет настроить.

Индуктивность фильтра включается последовательно антенне, образована 5 витками проволоки диаметром 1 мм, намотанных шагом 2 мм на оправку диаметром 6 мм. Подстроечные конденсаторы КПВМ-1 (5-14 пФ) включаются одной обкладкой на землю с обеих сторон катушки.

Настраивается антенна для УКВ радиоприемника измерением КСВ, напряженности поля. Минимум первого параметра совпадает с максимумом второго. В противном случае длина антенны укорачивается, замеры проводятся заново. Рекомендуется изначально выбрать длину проволоки 102 см, постепенно обрезать с верхнего конца, подбирая оптимальное значение.

Широкодиапазонная антенна

Для изготовления стационарной антенны УКВ высотой свыше полутора метров, настраиваемой на две любительские частоты, 145 МГц, 433 МГц, понадобятся диэлектрические стержни диаметром 7 – 17,5 мм. Намотанные витки закрепляются клеевым составом, компаундом. Их нужно точно намотать, сказанное не будет простым делом.

Работа выполняется цельной проволокой 2-мм диаметра. Прямой отступ от вершины составляет 38,7 см, затем стержень диэлектрика диаметром 7,5 мм обматывается строго 12,5 витками с шагом, чтобы общая высота индуктивности составила 63 мм. Отступив 42,2 см прямого участка, намотайте 64 витка на 7-мм стержень, чтобы общая высота индуктивности составила 28 см. Затем - прямолинейный участок 36,7 мм, снова витки - 7 штук (высота 32 мм) на 10-мм стержне. Наконец, последний проволочный сегмент длиной 56,4 см оканчивается индуктивностью, сформированной 4 витками (высота 20 мм) поверх стержня диаметром 17,5 мм.

На полтора витка сверху в последней индуктивности выполняется отвод к основной жиле коаксиального кабеля сопротивлением 50 Ом. Последовательно в цепь включается подстроечный конденсатор 1-10 пФ. Земля антенны УКВ подключается к экрану. Параллельно последней индуктивности включается емкость 1 пФ коррекции работы на длине волны 70 см.

Низ антенны снабжается восемью противовесами:

  • четыре диапазона 145 МГц;
  • четыре частоты 433 МГц.

После сборки производится настройка изделия, руководствуясь коэффициентом стоячей волны, измерителем сопротивления. В обоих диапазонах подберите приемлемые значения. Такая антенна, своими руками собранная, прослужит долго, если поместить в прочный защитный чехол из диэлектрического материала, защитить против попадания влаги компаундом.

Честь разработки варианта антенны УКВ принадлежит Александру RV9CX. Автор советует емкость 1 пФ выполнять отрезком кабеля SAT-50 (2 см). Одной обмоткой послужит экран, второй - жила. Центральный провод можно выдвигать-вставлять назад, изменяя емкость конденсатора.

FM диапазон

Для радиолюбителей является привычным делом копаться в элементной базе, собирая сложные приборы. Но самодельная антенна для УКВ приемника пригодится среднестатистическому любителю Маяка.

Сначала потребуется квадратная доска стороной 20 см, либо эквивалентный кусок плексигласа. Из фольги вырезается квадрат стороной 15,5 см, внутри прорезается по центру квадратное отверстие стороной 11,9 см.

В одной стороне концентрической фигуры (квадрата) делается вырез шириной пару сантиметров, фольга наклеивается на доску по центру прорезью вниз. На пересечении нижнего продолжения правой внутренней стороны квадрата, средней линии нижней стенки концентрической фигуры припаивается провод центральной жилы коаксиального кабеля. Четырьмя сантиметрами левее припаивается провод соединения с экраном.

Полученная конструкция уверенно принимает станции вещания FM-диапазона.

Применяемость самодельных антенн

Самодельные антенны КВ-УКВ пользуются немалой популярностью. В отличие от сложной приемо-передающей аппаратуры, где бесспорное лидерство достается заводским изделиям, проволочная конструкция, будучи правильно настроена, дает превосходные результаты.

Требуемые для оценки параметров приборы редко в наличии. Для правильной работы самодельной антенны УКВ требуются КСВ-метр, измеритель напряженности поля. В конечном итоге проблема заключается не в геометрических размерах деталей, взаимном положении, а в согласовании импедансов подводного коаксиального кабеля и непосредственно антенны.

Допускается использование любых методов устранения проблемы, выше было показано, как выполнить сказанное, заручившись помощью резонансных контуров. Небольшая подстройка выполняется изменением положения противовесов, сложно подобрать опытным путем нужные параметры. Резонаторы редко будут лучшим решением ввиду сопутствующих сложностей использования.

Лучшие статьи по теме